Ан 124 и ан 225 сравнение. Украинская "мрия" угрожает российским "русланам". Цель оправдывает средства


Мир авиагрузоперевозок похож на обычную доставку тяжёлых грузов, только вместо грохочущих фур, разбивающих асфальт, в небе летят красавцы-гиганты. Самолёты-тяжёловесы переносят на тысячи километров многотонные бурильные установки, агрегаты, машины и технику. Когда нет возможности или времени отправить груз по воде или по земле на помощь прмиходит тяжёлая транспортная авиация.

Лидером среди небесных грузовиков по праву считается Ан-124 «Руслан». Это самый большой в мире серийный грузовой самолёт. Крупнейшим оператором Ан-124 является российская авиакомпания «Волга-Днепр».

В июне этого года мне удалось присутствовать на уникальной транспортировке. 100-тонное колесо гидротурбины для Усть-Среднеканской ГЭС было доставлено «Русланом» из Питера в Магадан.


1. Самолёт Ан-124 «Руслан» создавался в первую очередь для воздушной транспортировки мобильных пусковых установок межконтинентальных баллистических ракет. Первый полёт опытный образец совершил 24 декабря 1982 года в Киеве.

2. Первым использованием грузового потенциала самолёта в гражданских целях стала доставка в 1985 году на опытном экземпляре «Руслана» 152-тонного карьерного самосвала «Юклид» из Владивостока в Полярный (Якутия). Машину перевезли в два рейса.

3. Масштабы Ан-124 поражают: длина самолёта - 69 метров.

4. Если взять за основу Airbus A-320, то Ан-124 будет длиннее почти в два раза.

5. Высота самолета - 21 метр. Это как 7-этажный дом.

6. Размах крыла составляет 73 метра. К примеру, это ширина Красной площади в Москве.

Два же авиазавода - ульяновский и киевский - собрали, в общей сложности, 56 самолетов Ан-124.

8. Многоопорное шасси, снабжённое 24-мя колёсами, позволяет эксплуатировать Ан-124 с грунтовых ВПП, а также изменять угол наклона фюзеляжа, что облегчает проведение погрузок.

9. На самолёте установлено 4 двигателя Д-18Т.

На взлётном режиме каждый двигатель развивает тягу 23,4 тонны (или 230 кН) т. е. суммарная тяга всех 4-х двигателей составляет 93,6 тонны (920 кН). Можно предположить, что каждый двигатель на взлётном режиме развивает мощность около 12 500 лошадиных сил!

10. Максимальная скорость самолета составляет 865 км/ч. Практическая дальность - 4500 км, перегоночная дальность - 16500 км.

11. Особенностью конструкции самолёта является наличие двух грузовых люков в носовой и в хвостовой частях фюзеляжа, что облегчает и ускоряет процессы погрузки грузов, - в частности груз в АН-124 можно загружать или выгружать одновременно с носа и хвоста.

12. . Открытие переднего грузолюка производится поэтапно с пульта управления: открываются замки носовой части, открывается носовая часть, выпускаются вспомогательные опоры, производится «приседание» самолёта (передние стойки шасси выкатываются вперёд), открывается передняя рампа, раскладываются средний трап и гермотрап.

13. В июне 2016 года Ан-124-100 «Руслан» авиакомпании «Волга-Днепр» доставил рабочее колесо гидротурбины из Санкт-Петербурга (где его произвел завод-изготовитель «Силовые машины») в Магадан для Усть-Среднеканской ГЭС.

Погрузка производилась в аэропорту Пулково.

14. Для транспортировки колеса гидротурбины использовалось оборудование, распределяющее вес груза по полу грузовой кабины. Это как для передвижения по снегу нужны снегоступы. Также важно закрепить груз в грузовой кабине (зашвартовать). Неправильное решение этих задач чревато повреждением конструкции ВС и даже авиакатастрофой.

15. Общий вес груза вместе с упаковочным оборудованием и оснасткой составил 115 тонн.

16. Подготовка к перевозке рабочего колеса диаметром около 6 метров велась полгода.

17. Длина грузовой кабины «Руслана» 36,5 м, ширина - 6,4 м, высота - 4,4 м.
Здесь могут поместиться 4 вертолёта Ми-8, вагон метро или даже самолёт Сухой Суперджет 100 (конечно без крыльев и хвостового оперения). Ракета-носитель «Ангара» тоже войдёт вся без остатка, но только в базовой комплектации.

18. Самолёт оснащён погрузочно-разгрузочным, швартовочным оборудованием и бортовыми передвижными мостовыми кранами.

19. Система для погрузки грузов массой до 120 тонн состоит из эстакады, рельсовой системы и ходовых элементов, двигающихся по рельсовой системе. Эстакада служит своеобразным продолжением плоскости пола грузовой кабины. Рельсовая система задаёт направление движения и распределяет нагрузку.

20. Работа технической бригады. Штатный состав - 8 человек. Но в связи с тем, что в Питере выполнялась уникальная погрузка, дополнительно привлекалось ещё 6 человек.

21. После перемещения рабочего колеса на эстакаду груз лебёдкой затянули в грузовую кабину «Руслана» и зашвартовали.

22. Погрузка продолжалась почти 10 часов.

23. К взлёту готов!

24. Кабина лётного экипажа Ан-124.

25. Экипаж «Руслана» состоит из 8 человек: командир, помощник командира, штурман, старший бортинженер, бортинженер по АО, бортрадист, 2 оператора погрузочно-разгрузочных работ.

26. Штурвал командира самого большого серийного самолёта на планете.

Управление самолётом бустерное, т.е. рулевые поверхности отклоняются исключительно с помощью гидравлических рулевых приводов, при отказе которых управлять самолётом вручную невозможно. Поэтому применено четырёхкратное резервирование. Механическая часть системы управления (от штурвала и педалей до гидравлических рулевых приводов) состоит из жёстких тяг и тросов.

27. Рычаг управления двигателеми (РУД).

28. «Руслан» - первый советский самолёт, оснащённый бортовой автоматизированной системой, которая проверяет параметры работы всех агрегатов, а также следит за тем, выполнял ли экипаж «Руководство полётной эксплуатации».

29. Автоматика определяет максимально допустимый взлётный вес, в зависимости от аэродрома, защищает самолёт от выхода на закритические режимы.

30. Самолёт имеет две палубы. Нижняя палуба - грузовая, верхняя - кабина пилотов и пассажирский отсек. При этом пройти в кабину пилотов из пассажирской кабины невозможно - они разделены крылом и у них раздельная герметизация.

В самолёте предусмотрено 18 мест для отдыха членов экипажа и членов инженерно-технической бригады - 6 мест в передней кабине и 12 в задней.

31. Связь пассажирской кабины с кабиной пилотов.

32. Рабочее колесо гидротурбины везли с двумя посадками - в Нижневартовске и Якутске. Это было необходимо для дозаправки и отдыха экипажа.

33. Общая длина маршрута составила 6500 км.

34. Первая посадка в Нижневартовске.

35. После каждой посадки производится осмотр воздушного судна.

36. У «Руслана» уникальное водило (тягач). Его перевозят с собой и достают из грузового отсека в каждом аэропорту, чтобы отбуксировать самолёт.

37.

38. Время заправки такого самолёта колеблется в диапазоне от получаса до полутора суток, а количество необходимых заправщиков колеблется от 5 до 40 в зависимости от их вместимости.

39. Максимальная масса заправляемого топлива ограничена максимальной взлётной массой самолёта и составляет 212,3 тонны.
Расход при максимальной загрузке - 12,6 тонны/час. При этом до выхода на эшелон расход топлива увеличивается до 17 тонн/час.

40. Топливозаправочный щиток.

Во время заправки техник следит за равномерностью распределения топлива по бакам самолёта. На фото происходит открытие (закрытие) кранов соответствующих баков. Внизу указатели количества топлива.

41. Самолёт имеет систему заправки через 4 горловины, расположенные в гондолах главных стоек шасси. Также возможна заправка через 2 горловины, расположенные на верхних частях крыльев.

42. Посадка в Якутстке.

43. Случается, что у аэропорта нет соответствующей стоянки для столь большого самолёта, и его ставят прямо на запасной ВПП.

44. Приветствие командира.

45. Конечная точка маршрута - Магадан.

46. Разгрузка происходит по той же схеме, что и погрузка только наоборот.

47. Рабочее колесо выкатили на эстакаду перед ВС.

48. Затем кранами частично разобрали упаковочное оборудование, которое смонтировано на рабочем колесе. После этого самолёт тягачом оттащили и он улетел. Колесо на домкратах подняли, под него заехал трейлер. Затем с помощью кранов демонтировали оставшиеся части оснастки.

49. Перевезённое «Волга-Днепр» рабочее колесо будет установлено на гидроагрегат №3 Усть-Среднеканской ГЭС, который планируется ввести в эксплуатацию в 2018 году.

50. «Русланы» в России летают редко. Например, этот Ан-124 после Магадана сразу улетел в Японию.

Крупнейшим оператором «Русланов» является российская авиакомпания «Волга-Днепр». Её флот насчитывает 12 самолётов Ан-124-100.

География полётов охватывает 190 стран и более 1300 аэропортов. В среднем авиакомпания ежегодно выполняет 1200 рейсов (около 33000 рейсов за 25 лет), перевозя порядка 60000 тонн грузов в год.

51. Спрос на услуги «Русланов» стабильный. Перевозки, например, для всех космических запусков расписаны на два-три года вперёд между операторами, фрахтующими Ан-124. Это та работа, которую никто, кроме «Руслана», выполнить не может.

52. Заказы на перевозки «Русланами» настолько уникальны, что иногда заказчики на этапе создания оборудования советуются с авиаперевозчиком, как лучше спроектировать и подготовить оборудование, чтобы его потом можно было перевезти на Ан-124.

Однажды авиакомпания «Волга-Днепр» перевезла из Остравы (Чехия) в Найроби (Кения) оборудование для золотодобывающей промышленности. Оборудование представляло собой огромные 50-тонные полукольца. Их габариты были сопоставимы с поперечным сечением грузовой кабины «Руслана». При загрузке зазоры между оборудованием и контуром грузовой кабины составили всего 77 мм!

53. Несколько примеров необычных перевозок:

В мае 1989 года из Лондона в Москву доставили 140 тонн аппаратуры для первого в России концерта легендарной группы Pink Floyd;
- в мае 1992 года из Объединенных Арабских Эмиратов в Швейцарию «Руслан» перевёз 52 тонны золота на сумму в 230 млн фунтов стерлингов;
- в 1993 году Майкл Джексон, в рамках мирового турне, перевёз в Москву 310 тонн сценического оборудования на трёх Ан-124.
- в 1997 одним рейсом из Лондона в Тунис было доставлено 100 тонн кинооборудования, включая макет космического корабля, для съёмок первого эпизода «Звёздных войн»;
- в число необычных пассажиров Ан-124 вошли 68 животных, перелетевших из Праги в Индонезию в 1997 году. В воздушном зоопарке были крокодилы, карликовый гиппопотам, зебры и 4 жирафа.

54. . Выпущенные в советские годы «Русланы» до сих пор покоряют небо. Лётную годность им продлевают на ульяновском авиазаводе «Авиастар-СП».

В версии Ан-124-100 грузоподъёмность увеличена на 30 тонн. Ресурс конструкции модернизированного «Руслана» установлен в 50 тысяч лётных часов, 10 тысяч полётов и 45 календарных лет.

55. Однако авиаперевозчики всё чаще заявляют о том, что возобновление выпуска воздушных гигантов необходимо было начать уже давно: после 2025 года самолёты начнут массово списываться.

Транспортный самолет Ан-225 не поднимался в небо с мая 2012 г. Крупнейший транспортный самолет в мире был прикован к пустому летному полю аэропорта Гостомель к северо-востоку от Киева. А когда осенью того же года вокруг самолета снова закипела деятельность, настоящий небесный гигант оказался выходцем из другой эпохи. Самолет оснащен шестью двигателями, его длина фюзеляжа и размах крыла больше, чем у Airbus A380, и он может нести огромную полезную нагрузку: до 250 тонн груза может быть загружено в гигантский транспортный отсек. Для сравнения: новейший транспортный самолет Boeing 747-8F может поднять только 140 тонн. Максимальный взлетный вес Airbus A380 составляет 560 тонн, а у Ан-225 – 630 тонн.

Ан-225 был разработан в 1980-е гг. в эпоху Холодной войны для перевозки советского космического корабля «Буран». «Буран» никогда не летал в космос (так в тексте – Перископ 2), но сегодня его можно увидеть в Музее техники г. Синшейма (Германия). Однако для Ан-225 была уготована новая роль в качестве перевозчика негабаритных грузов, и впоследствии этот бегемот среди самолетов был снова поднят в воздух.

По словам летчика Дмитрия Антонова о крайнем задании, сказанным в ходе посещения Air International аэропорта Гостомель, «мы перевезли в Душанбе рабочую лопатку для ветряной установки, причем она может транспортироваться только целиком, и только на борту Ан-225!». Несмотря на свою фамилию, Дмитрий не является родственником генерального конструктора Олега Антонова. Однако он является шеф-пилотом и руководителем парка транспортных самолетов компании «Авиалинии Антонова», которая эксплуатирует Ан-225 с аэродрома Гостомель.

Самолет работает в интересах различных заказчиков, которые хотят перевозить дорогостоящие грузы, и таким образом он редко полностью использует всю грузоподъемность. «Несколько лет назад мы загрузили пять танков весом 48 тонн каждый с целью достигнуть максимальной загрузки, но это было всего лишь один раз», вспоминает Виталий Шост, отвечающий за операционную деятельность «Авиалиний Антонова». Ан-225 до сих пор сохраняет несколько рекордов. В 2004 г. он совершил полет из Праги в Ташкент с грузом массой 247 тонн для нефтепровода. Затем, в 2009 г. он перевез 190-тонный генератор, крупнейший в истории перевезенный по воздуху цельный объект, от Франкфурта в Армению.

По словам исполнительного директора «Авиалиний Антонова» Константина Лушакова, «наши клиенты платят крупные суммы за полеты Ан-225». По его словам, «в 2003-2004 гг. в ходе войны в Афганистане самолет был постоянно при деле». Сегодня Ан-225 летает меньше, раз или два в месяц при условии, если дела идут хорошо. Примерно треть работы связано с военными контрактами. «С 2011 г. глобальный финансовый кризис затронул нас», говорит Лушаков о скромном портфеле заказов своего флагманского самолета. Хотя Ан-225 совершил свой первый полет в 1988 г., с технической точки зрения «Мрия» все еще остается молодым самолетом. По информации Лушакова, «мы слегка перевалили за 1000 взлетных циклов, а налет составляет 5000 часов. А назначенный ресурс самолета составляет 24000 часов».

Где-то на территории огромного завода КБ Антонова в Киеве находятся сохраненные и упакованные в контейнеры части для второго незавершенного экземпляра Ан-225. Однако Лушаков разрушает любые фантазии в отношении расширения флота транспортных самолетов: «он никогда не взлетит, мы не можем полностью использовать даже один самолет».

Спрос на «Руслан»

Коммерческая привлекательность Ан-225 отличается от таковой его «младшего брата» Ан-124 «Руслан», на базе которого Ан-225 и был создан. Четырехдвигательный Ан-124 был спрокетирован в качестве стратегического военно-транспортного самолета для советских ВВС, первый полет был совершен в 1982 г., спустя 10 лет самолет был сертифицирован для перевозки коммерческих грузов. Благодаря огромной носовой рампе, открывающейся вперед-вверх, а также массивной хвостовой рампе, Ан-124 является лучшим вариантом на мировом рынке негабаритных грузов. В этой категории Ан-124 является монополистом и выполняет различные полеты – от гуманитарных миссий после природных катастроф, до чартерных полетов с крупногабаритными грузами, к примеру, локомотивами, для поддержки военных операций. До 2003 г. было выпущено примерно 50 Ан-124. Некоторые из них летают под флагом российских ВВС, а 26 принадлежат пяти гражданским перевозчикам, причем у «Авиалиний Антонова» насчитывается семь подобных машин.

По словам Виталия Шоста из них только два сейчас находятся в летном состоянии. Другие проходят крупномасштабный ремонт и модернизацию, которые занимают примерно два месяца для каждого самолета. «Мы выполняем модернизацию Ан-124, так как самолет все же эксплуатируется уже 30 лет», говорит Константин Лушаков. Обе вспомогательные силовые установки на борту каждого самолета заменяются, также как и некоторые элементы конструкции, которые были повреждены или ослаблены в ходе перевозки тяжелых грузов. «Мы, как проектировщик и изготовитель самолета, сначала реализуем эти улучшения на наших самолетах, а потом рекомендуем их другим перевозчикам», добавляет Лушаков.

Эксплуатанты кровно заинтересованы в поддержании летной годности своих самолетов. По словам Лушакова, «для этого уникального самолета существует большая рыночная ниша. Спрос постоянно превышает наличные возможности. Причиной является глобализация». В то время как годовые темпы роста пассажирских перевозок составляют 4-5%, рост грузовых перевозок – 6-7%, то рынок негабаритных грузов, обслуживаемый Ан-124, растет на 11-12%. Несколько гражданских Ан-124, привлеченных к операциям НАТО, базируются в крупных аэропортах как Лейпциг/Галле в Германии.

Налет каждого Ан-124 достигает от 14000 до 24000 часов, Лушаков комментирует эти цифры в том ключе, что «ничто не сравнится с налетом пассажирских самолетов». Изначально назначенный ресурс Ан-124 был установлен на уровне 24000 часов, но, по словам Лушакова, «мы решили, что Ан-124 имеет потенциал до 50000 часов и мы постепенно увеличиваем ресурс «этапами» по 4000 часов».

Виталий Шост показывает на углубление в огромном фюзеляже Ан-124, проходящим техническое обслуживание. Это пространство расположено высоко и скрывает зализы, через которые плоскости входят в фюзеляж. Шост показывает на темный отсек за ним, из которого можно увидеть центроплан, который проходит основной отсек. Он разделяет отсек на две половины, передняя кабина отдыха экипажа (сразу за кабиной пилотов), которая может принять до шести человек, и задняя пассажирская кабина, в которой может разместиться до 20 сопровождающих груз и другие члены экипажа. Самое неожиданное открытие скрывалось в хвостовой части. Внутри киля имеется алюминиевая лестница в полной темное ведет к самой его верхушке. «Там расположена антенна, которую технический персонал может обслуживать без использования дополнительного оборудования», поясняет Шост. В Советской армии требовалось практическое мышление, свидетельством чего служит аварийный проход, который в случае необходимости позволяет выпрыгнуть с парашютом из пилотской кабины.

Новое производство?

По словам Константина Лушакова, «двадцати шести гражданских Ан-124 недостаточно». Разговоры о возобновлении производства «Русланов» идут давно, но Лушаков отмечает, что «решение еще не принято». Это будет глобальный проект, как с финансовой, так и с технической точек зрения, так как, к примеру, вся необходимая оснастка для производства центроплана из цельной алюминиевой заготовки уничтожена. По словам Лушакова, «в Киеве мы можем только спроектировать новый Ан-124, а производству и сборку должен вести завод в Ульяновске». Речь идет о предприятии «Авиастар-СП», который входит в Объединенную авиастроительную корпорацию, и где в будущем будет вестись производство «Русланов» в любой форме. Однако нужен спрос. По расчетам Лушакова «предпосылкой должен стать заказ 20 самолетов российским министерством обороны, и я ожидаю заказ еще от 20 до 80 машин от гражданских эксплуатантов». Только одна компания «Волга-Днепр» заявила о своем интересе закупить не менее 40 самолетов. По данным Лушакова, «конструкция и аэродинамика нового Ан-124 останется практически такой же, как на нынешних машинах, но 80% бортовых систем будут новыми». Шеф-пилот Дмитрий Антонов уже знает свою мечту. В списке пожеланий к Ан-124 нового поколения фигурируют «полностью цифровая «стеклянная» кабина пилотов, экипаж максимум из трех-четырех человек, более эффективные двигатели и улучшенная гидравлика».

Оригинал публикации: Andreas Spaeth, Air International, April 2013

Перевод Андрея Фролова

Ан−124−100 «Руслан» и самый большой в мире транспортный самолет Ан−225 «Мрия», 25 лет со дня первого полета которого мы будем отмечать в декабре этого года, по−прежнему уверенно лидируют на рынке воздушных перевозок крупногабаритных и нестандартных грузов.

Зачастую они являются единственным транспортным средством, способным эффективно выполнить поставленную задачу.

Об этом нашему корреспонденту рассказали в пресс-службе ГП «Антонов».

Несколько таких перевозок были выполнены самолетами авиакомпании «Авиалинии Антонова», транспортного подразделения ГП «АНТОНОВ», в июне 2013 году.

Модернизированный Ан-124-100 "Руслан"

Так, самолет Ан−124−100 доставил лопасти ветровой турбины электростанции из Вичиты, США (Wichita, USA) в Скрыдструп, Дания (Skrydstrup, Denmark). Перевозка была выполнена по заказу Geodis Wilson Denmark A/S для компании SIEMENS. Принимая во внимание габариты лопасти (35,4м х 3,67м х 3,5м), эффективно этот груз мог перевезти только самолет Ан−124−100, длина грузовой кабины которого 36,4 м.



Самолет Ан−124−100 доставил лопасти ветровой турбины электростанции из Вичиты, США (Wichita, USA) в Скрыдструп, Дания (Skrydstrup, Denmark)

Специалистами всех вовлеченных сторон была совместно проработана и согласована технология загрузки такого длинномерного и крупногабаритного груза, в соответствии с которой самолет был соответствующим образом подготовлен.

Рейс был спланирован и выполнен в требуемый срок строго в соответствии с утвержденным графиком. Это позволило Заказчику приступить к испытаниям лопасти в кратчайшие сроки.

Самый большой в настоящее время самолет в мире Ан-225 "Мрия" (Мечта)

Несколько рейсов в июне выполнил и самый большой в мире самолет Ан−225 «Мрия». Он перевез крупногабаритное оборудование для судостроения из Манчестера (Великобритания) в Сеул (Южная Корея).

Перевозка была осуществлена по заказу компании Korean Express GmbH для компании SAMSUNG Heavy Industries Co, Ltd. Для погрузки/разгрузки использовалось специальное оборудование, разработанное специалистами "Антонов".



Ан−225 «Мрия» перевез крупногабаритное оборудование для судостроения из Манчестера (Великобритания) в Сеул (Южная Корея)

В конце июня самолет Ан−225 "Мрия" доставил промышленное оборудование общим весом 140 тонн из Сеула (Южная Корея) в аэропорт Базель (Франция/Швейцария). Заказчиком этого чартерного рейса выступила компания Chapman Freeborn.

Самолет Ан−225 обеспечил доставку необходимого оборудования за один рейс в кратчайшие сроки и дешевле, чем если бы перевозка выполнялась двумя рейсами самолета Ан−124−100 "Руслан".

Людей всегда привлекает какой-либо рекорд — рекордные самолёты всегда пользуются большим вниманием

Airbus А380 – широкофюзеляжный двухпалубный реактивный пассажирский самолет, созданный концерном Airbus S.A.S. (ранее Airbus Industrie) – самый крупный серийный авиалайнер в мире.

Высота самолета составляет 24,08 метра, длина – 72,75 (80,65) метра, размах крыла 79,75 метра. A380 может совершать беспосадочные перелеты на расстояние до 15 400 км. Вместимость – 525 пассажиров в салоне трех классов; 853 пассажира в одноклассовой конфигурации. Также предусмотрена грузовая модификация A380F с возможностью перевозить груз до 150 тонн на расстояние до 10 370 км.

На разработку Аэробус А380 ушло около 10 лет, стоимость всей программы составила около 12 млрд. евро. Airbus утверждает, что для возмещения затрат корпорации необходимо продать 420 самолетов, хотя по оценкам некоторых аналитиков, цифра должна быть намного больше.

По словам разработчиков, самой сложной частью в создании А380 стала проблема снижения его массы. Ее удалось решить за счет широкого применения композиционных материалов как в силовых элементах конструкции, так и во вспомогательных агрегатах, интерьерах и т. д.

Для снижения массы самолета также использовались прогрессивные технологии и улучшенные алюминиевые сплавы. Так, 11–тонный центроплан на 40% своей массы состоит из углепластиков. Верхние и боковые панели фюзеляжа производятся из гибридного материала Glare (англ.). На нижних панелях фюзеляжа применена лазерная сварка стрингеров и обшивки, что существенно снизило количество крепежа.

По заявлениям компании Airbus, в расчете на одного пассажира Аэробус А380 сжигает на 17% меньше топлива, чем “современный самый большой самолет” (по всей видимости, имеется в виду Боинг 747). Чем меньше топлива сжигается, тем меньше выбросы углекислого газа. Для самолета выбросы CO2 в расчете на одного пассажира составляют всего лишь 75 граммов на километр пути. Это почти вдвое меньше нормы выброса углекислоты, установленной Европейским союзом для автомобилей, произведенных в 2008 году.

Первый проданный самолет A320 был сдан заказчику 15 октября 2007 после длительной фазы приемо–сдаточных испытаний и поступил на службу 25 октября 2007 года, совершив коммерческий рейс между Сингапуром и Сиднеем. Два месяца спустя президент компании Singapore Airlines Чю Чонг Сенг заявил, что Airbus A380 работает лучше, чем ожидалось и потребляет на пассажира на 20% меньше топлива, чем имеющиеся у компании Боинги 747–400.

Верхняя и нижняя палубы самолета соединены двумя лестницами, в носовой и хвостовой частях лайнера, достаточно широкими, чтобы на них поместились два пассажира плечом к плечу. В конфигурации с 555 пассажирами A380 имеет на 33% больше пассажирских мест, чем Боинг 747–400 в стандартной конфигурации с тремя классами, но салон имеет на 50% больше пространства и объема, в результате чего на одного пассажира приходится больше места.

Максимальная сертифицированная вместимость самолета – 853 пассажира при конфигурации с единым эконом–классом. Анонсированные конфигурации имеют число пассажирских мест от 450 (для Qantas Airways) до 644 (для Emirates Airline, с двумя классами комфортности).

Хьюз H-4 Геркулес (англ. Hughes H-4 Hercules) - транспортная деревянная летающая лодка, разработанная американской фирмой Hughes Aircraft под руководством Говарда Хьюза. Этот 136-тонный самолёт, первоначально обозначенный как НК-1 и получивший неофициальное прозвище Spruce Goose («Щёголь, Пижон», дословно «Еловый гусь»), был самой большой когда-либо построенной летающей лодкой, а размах его крыла и поныне остаётся рекордным - 98 метров. Он был предназначен для транспортировки 750 солдат при полном снаряжении.

В начале Второй мировой войны правительство США выделило Хьюзу 13 миллионов долларов на изготовление прототипа летающего судна, но к окончанию военных действий летательный аппарат готов не был, что объяснялось нехваткой алюминия, а также упрямством Хьюза, стремившегося создать безупречную машину.

Технические характеристики

  • Экипаж: 3 человека
  • Длина: 66,45 м
  • Размах крыла: 97,54 м
  • Высота: 24,08 м
  • Высота фюзеляжа: 9,1 м
  • Площадь крыла: 1061,88 м²
  • Максимальная взлётная масса: 180 тонн
  • Масса полезной нагрузки: до 59 000 кг
  • Запас топлива: 52 996 л
  • Двигатели: 8× воздушного охлаждения Pratt&Whitney R-4360-4A по 3000 л. с. (2240 кВт) каждый
  • Пропеллеры: 8× четырёхлопастных Hamilton Standard, диаметром 5,23 м

Лётные характеристики

  • Максимальная скорость: 351 миль/ч (565,11 км/ч)
  • Крейсерская скорость: 250 миль/ч (407,98 км/ч)
  • Дальность полёта: 5634 км
  • Практический потолок: 7165 м.

Несмотря на своё прозвище, самолёт построен практически полностью из берёзы, точнее из выклеенной по шаблону берёзовой фанеры.

Самолёт Hercules, пилотируемый самим Говардом Хьюзом, совершил свой первый и единственный полёт только 2 ноября 1947 года, когда поднялся в воздух на высоту 21 метр и покрыл приблизительно два километра по прямой над гаванью Лос-Анджелеса.

После длительного хранения (Хьюз поддерживал самолёт в рабочем состоянии до своей смерти в 1976 году, тратя на это до 1 млн долларов США в год) самолёт был отправлен в музей Лонг-Бич, Калифорния.

Самолёт ежегодно посещают около 300 000 туристов. Биография создателя самолёта Говарда Хьюза и испытания самолёта показаны в фильме Мартина Скорсезе «Авиатор».

В настоящее время является экспонатом музея Evergreen International Aviation в Макминнвилле (Орегон), куда был перевезён в 1993 году.

Эта машина была спроектирована и построена в очень короткие сроки: первые чертежи начали создаваться в 1985 году, а в 1988 году транспортный самолет уже был построен. Причину столь сжатых сроков можно довольно легко объяснить: дело в том, что «Мрия» создавалась на базе хорошо отработанных узлов и агрегатов Ан-124 «Руслан». Так, например, фюзеляж «Мрии» имеет те же поперечные размеры, что и Ан-124, но длиннее его, увеличился размах и площадь крыльев. Такое же строение, как у «Руслана» имеет крыло, но в него были добавлены дополнительные секции. У Ан-225 появились два дополнительных двигателя. Шасси самолета аналогично шасси «Руслана», но в нем семь, вместо пяти стоек. Довольно серьезно был изменен грузовой отсек. Изначально было заложено два самолета, но достроен был только один Ан-225. Второй экземпляр уникального самолета готов приблизительно на 70% и может быть достроен в любое время, при условии должного финансирования. Для его достройки нужна сумма 100-120 миллионов долларов.

1 февраля 1989 года самолет был показан широкой публике, а в мае того же года Ан-225 совершил беспосадочный перелет из Байконура в Киев, неся у себя на спине «Буран», весящий шестьдесят тонн. В том же месяце Ан-225 доставил космический корабль «Буран» на авиасалон в Париже и произвел там настоящий фурор. В общей сложности, на счету самолета 240 мировых рекордов, в том числе перевозка самого тяжелого груза (253 тонны), самого тяжелого монолитного груза (188 тонн) и самого длинного груза.

Самолет Ан-225 «Мрия» изначально создавался для нужд советской космической отрасли. В те годы Советский Союз строил «Буран» - свой первый корабль многоразового использования, аналог американского шаттла. Для реализации этого проекта была необходима транспортная система, с помощью которой можно было перевозить грузы больших размеров. Именно для этих целей и задумывалась «Мрия». Кроме компонентов и узлов самого космического корабля, необходимо было доставлять и части ракеты «Энергия», которые также имели колоссальные размеры. Все это доставлялось с места производства до точек окончательной сборки. Узлы и компоненты «Энергии» и «Бурана» изготавливали в центральных регионах СССР, а окончательная сборка происходила в Казахстане, на космодроме Байконур. Кроме того, Ан-225 изначально проектировали так, чтобы в будущем он мог перевозить готовый космический корабль «Буран». Также Ан-225 мог перевозить крупногабаритные грузы для нужд народного хозяйства, например, оборудование для горнодобывающей, нефтегазовой промышленности.

Помимо участия в советской космической программе, самолет должен был использоваться для перевозки негабаритных грузов на большие расстояния. Эту работу Ан-225 «Мрия» выполнят и сегодня.

Общие функции и задачи машины можно описать так:

  • перевозки грузов широкого назначения (крупногабаритных, тяжелых) общим весом до 250 т;
  • внутриконтинентальные беспосадочные перевозки грузов весом 180−200 т;
  • межконтинентальные перевозки грузов весом до 150 т;
  • перевозки тяжелых крупногабаритных грузов на внешней подвеске общим весом до 200 т;
  • использование самолета для воздушного старта космических аппаратов.

Перед уникальным самолетом ставили и другие, еще более амбициозные задачи и они также были связаны с космосом. Самолет Ан-225 «Мрия» должен был стать своеобразным летающим космодромом, платформой с которой на орбиту выводились бы космические корабли и ракеты. «Мрия», по замыслу конструкторов, должны была стать первой ступенью для старта многоразовых космических кораблей типа «Буран». Поэтому изначально перед конструкторами стояла задача сделать самолет с грузоподъемностью не менее 250 тонн.

Советский шаттл должен был стартовать со «спины» самолета. Подобный способ запуска аппаратов на околоземную орбиту имеет множество серьезных плюсов. Во-первых, не нужно строить очень дорогостоящих наземных пусковых комплексов, а во-вторых, запуск ракеты или корабля с самолета серьезно экономит топливо и позволяет увеличить полезную нагрузку космического аппарата. В некоторых случаях это может позволить совсем отказаться от первой ступени ракеты.

Различные варианты воздушного старта разрабатываются и в настоящее время. Особенно активно в этом направлении работают в США, есть и российские наработки.

Увы, с распадом Советского Союза, проект «воздушного старта», с участием Ан-225 был практически похоронен. Этот самолет был активным участником программы «Энергия-Буран». Ан-225 выполнил четырнадцать полетов с «Бураном» на верхней части фюзеляжа, в рамках этой программы были перевезены сотни тонн различных грузов.

После 1991 года финансирование программы «Энергия-Буран» прекратилось, и Ан-225 остался без работы. Только в 2000 году началась модернизация машины для использования ее в коммерческих целях. Самолет Ан-225 «Мрия» обладает уникальными техническими характеристиками, огромной грузоподъемностью и может перевозить крупногабаритные грузы на своем фюзеляже - все это делает самолет очень востребованным для коммерческих перевозок.

С того времени Ан-225 выполнил множество рейсов и перевез сотни тонн различных грузов. Некоторые транспортные операции можно смело назвать уникальными и не имеющими аналогов в истории авиации. Самолет несколько раз принимал участие в гуманитарных операциях. После разрушительного цунами он доставлял электрогенераторы в Самоа, перевозил строительную технику в разрушенное землетрясением Гаити, помогал устранять последствия землетрясения в Японии.

В 2009 году была проведена модернизация самолета Ан-225, и срок его службы был продлен.

Самолет Ан-225 «Мрия» выполнен по классической схеме, с высокоподнятыми крыльями небольшой стреловидности. Кабина находится в передней части самолета, грузовой люк также расположен в носовой части машины. Самолет выполнен по двухкилевой схеме. Подобное решение связано с необходимостью перевозить грузы на фюзеляже самолета. Планер самолета Ан-225 имеет очень высокие аэродинамические свойства, величина аэродинамического качества этой машины равна 19, что является отличным показателем не только для транспортных, но и для пассажирских самолетов. Это, в свою очередь, серьезно улучшило характеристики самолета и снизило расход топлива.

Практически все внутреннее пространство фюзеляжа занимает грузовой отсек. По сравнению с Ан-124 он стал больше на 10% (на семь метров). При этом размах крыла увеличился всего лишь на 20%, были добавлены еще два двигателя, а грузоподъемность самолета выросла в полтора раза. При строительстве Ан-225 активно использовались чертежи, узлы и агрегаты Ан-124, благодаря чему самолет и смогли создать в такой короткий срок. Вот основные отличия Ан-225 от Ан-124 «Руслан»:

  • новый центроплан;
  • увеличена длина фюзеляжа;
  • однокилевое хвостовое оперение заменено на двухкилевое;
  • отсутствие хвостового грузового люка;
  • количества стоек основного шасси увеличено с пяти до семи;
  • система крепления и наддува наружных грузов;
  • установлены два дополнительных двигателя Д-18Т.

В отличие от «Руслана», «Мрия» имеет всего лишь один грузовой люк, который находится в носовой части самолета. Как и ее предшественник, «Мрия» может изменять клиренс и угол наклона фюзеляжа, что крайне удобно при погрузочно-разгрузочных работах. Шасси имеет три опоры: переднюю двухстоечную и две основные, каждая из которых состоит из семи стоек. При этом все стойки независимы друг от друга и выпускаются отдельно.

Для взлета без груза самолету необходима взлетная полоса длиной 2400 метров, с грузом - 3500 метров.

Ан-225 имеет шесть двигателей Д-18Т, подвешенных под крыльями, а также две вспомогательные силовые установки, расположенные внутри фюзеляжа.

Грузовой отсек сделан герметичным и снабжен всем необходимым оборудованием для погрузочных работ. Внутри фюзеляжа Ан-225 может перевозить до шестнадцати стандартных авиационных контейнеров (каждый весом десять тонн), пятьдесят легковых автомобилей или же любой груз весом до двухсот тонн (турбины, грузовая техника особо крупных размеров, генераторы). Сверху на фюзеляже предусмотрены специальные крепления для перевозки крупногабаритных грузов.Д

Технические характеристики Ан-225 «Мрия»

Размеры

  • Размах крыла, м 88,4
  • Длина, м 84,0
  • Высота, м 18,2

Масса, кг

  • Пустого 250000
  • Максимальная взлетная 600000
  • Масса топлива 300000
  • Двигатель 6*ТРДД Д-18Т
  • Удельный расход топлива, кг/кгс·ч 0,57-0,63
  • Крейсерская скорость, км/ч 850
  • Практическая дальность, км 15600
  • Дальность действия, км 4500
  • Практический потолок, м 11000

Экипаж шесть человек

Ан-225 советский транспортный реактивный самолёт сверхбольшой грузоподъёмности разработки ОКБ им. О. К. Антонова, является самым большим самолётом в мире.

Применение прессованных панелей и разработка новых сплавов для самолетов Ан-124 "Руслан" и Ан-225 "Мрия"

В апреле 1973 года после окончания Московского авиационного института я распределился на Киевский Механический Завод (я родом из с. Великополовецкое, Киевской области), где генеральным конструктором был О.К. Антонов. Поскольку у нас в институте преподавали выдающиеся специалисты в области авиации, в частности, Егер С.М. (заместитель Туполева А.Н. по пассажирской тематике), то мне очень хотелось попасть в отдел общих видов КО-7, где закладываются основы будущих самолетов. Но зам. директора завода по кадрам Рожков М. С. сказал: "Или иди в отдел прочности РИО-1, или езжай обратно в Москву". Пришлось скрепя сердце соглашаться. И мне очень повезло, т.к. я попал в чудесный коллектив, где руководителем была Елизавета Аветовна Шахатуни, бывшая жена О.К. Антонова, специалист высочайшей квалификации и замечательный Человек. Она всегда стремилась к новым знаниям и внедряла их в прочностные расчеты, опекала молодых специалистов, помогала и в производственных вопросах, и бытовых.

Я попал в созданную 4 месяца назад новую бригаду усталостной прочности, где был только один руководитель Бенгус Г.Ю., и я позже стал его заместителем. Дело в том, что в 1972 году под Харьковом потерпел катастрофу пассажирский самолет Ан-10, а также под Куйбышевом в полете летчики услышали, как в районе центральной части крыла самолета Ан-10 что-то трещит. Чудом не произошло катастрофы. Комиссия определила, что причиной стало усталостное разрушение центроплана крыла. В результате приказом по Министерству авиационной промышленности (МАП) во всех Опытно-конструкторских бюро (ОКБ) СССР были образованы такие бригады. Ранее в СССР ресурс самолетов определялся по результатам ресурсных лабораторных испытаний натурных образцов планеров самолетов, которые рассчитывались только на статическую прочность, а также по результатам эксплуатации самолетов, так называемых, лидеров (больший налет и более частые и тщательные осмотры).

Задачей новой бригады стояла разработка методик расчета ресурса самолетов на стадии проектирования. Поскольку опыта было мало, то старались максимально воспользоваться доступным зарубежным опытом, и работами, которые проводились в других ОКБ, в частности Лоима В.Б, который работал у Туполева А.Н., ЦАГИ (центральный аэрогидродинамический институт), о также результатами натурных испытаний самолетов КМЗ. Проводили усталостные испытания образцов и элементов авиационных конструкций. Основными были образцы с отверстием, для расчетов регулярных сечений, и проушины, для расчетов нерегулярных (поперечных стыков) сечений конструкции. На основании этих испытаний и материалов разрабатывались методики расчета крыла, фюзеляжа, оперения и других сложных элементов конструкции планера. Позже начали проводить расчеты и испытания на скорость роста трещин и остаточную прочность образцов и элементов конструкции. Эти работы проводил Малашенков С. П. Все эти наработки впервые были использованы при проектировании самолета Ан-72, а затем Ан-74. Причем прочнисты, с перепугу, (специалистов, которые отвечали за ресурс самолета Ан-10, прокуратура хотела реально посадить в тюрьму, с большим трудом руководство спасло их) заложили такой запас прочности, что не смогли разрушить крыло в процессе статических испытаний. Это позволило обеспечить максимальную грузоподъемность 10 тонн, что более чем в 1.5 раза выше требований ТЗ.

Также отдельно отмечу выполненные работы по выбору сплава для сложных фрезерованных деталей из поковок и штамповок для самолета Ан-72 и Ан-74. В СССР для этих целей, в основном, использовался низкопрочный (предел прочности 39 кг/мм2) сплав АК6Т1. Хотя в самолете Ан-22 уже был широко применен сплав В93Т1 (48 кг/мм2), но большие проблемы с его низким ресурсом (см. ниже) очень пугали прочнистов. В США для этих целей использовался высокопрочный (56 кг/мм2) сплав 7075Т6. По результатам многих исследований было известно, что среднепрочный (44 кг/мм2) сплав Д16Т обладает высокими характеристиками усталостной долговечности и превосходит перечисленные сплавы, но практически нигде не применяется в виде ковочного сплава. Однако мы нашли в литературе, что в самолете «Каравелла» (Франция), аналог сплава Д16Т применялся для этих целей. Всесоюзный институт авиационных материалов (ВИАМ) нас пугал, но не конкретно какими-то последствиями, а так, в общем, что этот сплав не применяется для поковок и штамповок. Тем не менее мы изготовили на Верхне-Салдинском металлургическом заводе (ВСМОЗ) опытные штамповки, испытали, и Шахатуни Е.А. было принято решение о применении сплава Д16Т для поковок и штамповок самолета Ан-72. Меня послали на указанный завод, чтобы я согласовал технические условия, где мы заложили прочность несколько выше среднего уровня, потому что проблему снижения массы в самолетостроении еще никто не отменял. Никто на заводе не хотел подписываться под этими характеристиками. Я бегал целую неделю между цехами и начальством, отморозил уши, но нам здорово помог зам. главного инженера Никитин Е.М., заставив низы подписать наши характеристики. (Впоследствии руководство КМЗ взяло его к нам на завод главным металлургом).

Более 35 лет самолеты Ан-72 и Ан-74 эксплуатируются в сложных климатических условиях и никаких проблем с деталями из сплава Д16Т нет!

В это же время в лаборатории статических испытаний проводились ресурсные испытания натурного планера самолета Ан-22. И там очень рано начали появляться трещины, особенно в поперечных стыках крыла. Крыло самолета Ан-22 было сделано: низ прессованные панели из сплава Д16Т, верх прессованные панели сплава В95Т1, а поперечные стыковочные элементы, так называемые гребенки, из сплава В93Т1. Так вот буквально через 1000 лабораторных циклов в деталях из сплава В93Т1 начали появляться трещины. А этот сплав также очень широко применялся в конструкции и фюзеляжа и шасси. И было объявлено, кто найдет трещину, то заплатят 50 рублей. И мы лазали по этому крылу, как тараканы, в поисках трещин. Но их находили специалисты отдела испытаний, в основном, неразрушающими методами контроля. Позже, когда уже возникло понимание причин возникновения столь ранних трещин, мы поняли, что был виноват не только сплав, но и конструкторы и прочнисты, которые это проектировали. В частности, в конструкции крыла для установки топливных насосов были сделаны отверстия диаметром около 250 мм. Вокруг этих больших отверстий было много маленьких отверстий для болтов, которыми крепился насос. Это создавало высочайшую концентрацию напряжений. В гребенке поперечного стыка, к которой крепились панели крыла, с целью облегчения были сделаны продольные отверстия, которые пересекались с отверстиями крепежных элементов. Все эти отверстия были с острой кромкой и низкого качества. Поэтому неудивительно, что столь рано конструкция начала разрушаться. Для расчетов, с целью увеличения ресурса поперечных стыков, Щучинским М.С. была разработана программа для ЭВМ, которая позволяла определять нагрузку на болты в многорядных стыках. Используя эту программу, специалисты меняли диаметр и материал крепежных элементов с целью равномерного распределения нагрузки между болтами. Позже, для обеспечения ресурса крыла самолета Ан-22 в эксплуатации, поперечные стыки усилили стальными накладками, а отверстия под топливные насосы разделали и увеличили, убрав отверстия под крепеж, что позволило существенно снизить концентрацию напряжений. Топливные насосы крепились к крылу посредством переходных деталей.

У Шахатуни Е.А. возникли сомнения по поводу того, что уровень ресурсных характеристик отечественных сплавов был такой же, как у их зарубежных аналогов, и она в 1976 году поручила мне провести сравнение усталостной долговечности. Очень сложно это было сделать, т.к. были существенные отличия – у нас образцы с отверстием, у них с боковыми надрезами; у нас частота испытаний 40 Гц, у них 33 Гц. Не всегда совпадали и режимы испытаний: пульсирующая нагрузка или симметричный цикл. Тем не менее, перелопатив кучу иностранных источников, удалось подобрать немного убедительных результатов, где мы показали некоторое преимущества зарубежных сплавов над отечественными по усталостной долговечности. Был подготовлен небольшой отчет, я его подписал у Шахатуни Е.А. и думал, что у Антонова О.К. она подпишет сама. Но Елизавета Аветовна отправили меня. Она договорилась с секретарем Марией Александровной, чтобы меня пропустили к Олегу Константиновичу. Он был в курсе этих работ, т.к. Шахатуни ему об этом рассказывала. И вот я, молодой специалист, попадаю к Антонову с отчетом и сопроводительным письмом, в котором этот отчет рассылался руководителям отраслевых институтов ЦАГИ, ВИАМ и ВИЛС. А письмо Шахатуни написала довольно жесткое. Я показываю все это Антонову, а он говорит, что письмо надо исправить и смягчить, что сам и делает. Я возражаю, т.к. его уже согласовала Шахатуни, на что Олег Константинович очень мягко и деликатно рассказывает мне, почему надо переделать письмо. Я потом еще несколько раз встречался с Антоновым в разных ситуациях, и у меня сложилось впечатление, что от него исходило «солнечное тепло». После встречи с этим выдающимся Ученым, Конструктором, Организатором и Человеком хотелось работать и буквально «лететь»!

После рассылки этого отчета у нас началась настоящая «война» с руководством ВИАМ и ВИЛС (Всесоюзный институт легких сплавов), которые рассказывали, что в СССР все характеристики сплавов и полуфабрикатов из них такие, как и у США, и мы им ни в чем не уступаем. Особенно жесткое противостояние было с начальником лаборатории №3 ВИАМ Фридляндером И.Н. Руководство ЦАГИ, в лице Зам. начальника ЦАГИ по прочности Селихова А.Ф. и начальника отделения Воробьева А.З., хотя и заняли нашу сторону, но вели себя очень пассивно. Руководство КМЗ вытащило эти вопросы на уровень Министерства. Мы также взяли себе в союзники прочнистов с ОКБ Туполева А.Н. Со временем нас в ВИАМ поддержали академик Кишкин С. Т. и его жена Кишкина С.И., доктор наук, руководитель лаборатории прочностных испытаний. Позже, когда руководителем ВИАМ назначили Шалина Р.Е., то началась совместная продуктивная работа. Мне очень повезло, т.к. я работал с выдающимися специалистами отраслевой металлургии, начиная от рядовых сотрудников и кончая руководителями институтов, металлургических заводов и МАП. Вообще в то время в отраслевой металлургии было много замечательных людей и выдающихся специалистов, с которыми мы сотрудничали: зам. начальника ВИЛС Добаткин В.И., начальник лаборатории ВИЛС Елагин В.И., зам. начальника ВИАМ Засыпкин В.А. и многие многие другие.

В СССР никак не могли понять, как зарубежные самолеты В-707, В-727, ДС-8 и др. имеют ресурс 80 000-100 000 часов налета, тогда как в СССР 15 000-30 000. Мало того, когда проектировали самолет Ту-154, так дважды пришлось уже в эксплуатации переделывать крыло, т.к. оно не обеспечивало требуемый ресурс. Вскоре нам представилась возможность изучить конструкцию зарубежных самолетов. В Шереметьево под Москвой потерпел катастрофу самолет ДС-8 японской авиакомпании, а затем на Кольском полуострове истребителями был «посажен» самолет В-707 корейской авиакомпании, который заблудился и попал в воздушное пространство СССР.

В ММЗ генерального конструктора Илюшина С.В. были собраны куски конструкций и Шахатуни послала меня, чтобы я отобрал необходимые образцы для исследований и изучения. Также испытания их проводились и в ЦАГИ, в частности, на живучесть (длительность роста трещины и остаточная прочность при наличии трещины).

По результатам исследований и испытаний было определено:

В конструкции (оперение и продольный набор фюзеляжа) американских самолетов более широко применяется высокопрочный сплав 7075-Т6 (аналог в СССР сплава В95Т1), тогда как в отечественных самолетах для этих конструкций применялся мене прочный, но более высокоресурсный сплав Д16Т (аналог в США 2024Т3);

Широкое применение болт-заклепок и других крепежных элементов, которые ставились с натягом, что существенно повышало усталостную долговечность;

Автоматическая клепка стержнями панелей крыльев автоматами фирмы «Джемкор», что обеспечивало высокие усталостные характеристики и их стабильность, тогда как в СССР большинство этих работ выполнялось вручную;

Применение твердой плакировки на листах, что повышало их усталостную долговечность. В СССР плакировка (покрытие с целью защиты от коррозии) выполнялась чистым алюминием;

Значительно более высокий уровень проектирования конструкции для обеспечения высокой усталостной долговечности;

Более высокое качество изготовления элементов конструкции и тщательная подгонка деталей в производстве;

Более низкое содержание вредных примесей железа и кремния в сплавах 2024 и 7075, чем в отечественных сплавах, что повышало живучесть (длительность роста трещины и остаточную прочность при наличии нормированной трещины) конструкции;

В конструкции шасси применялась высокопрочная (210 кг/мм2) сталь, тогда как у нас сталь 30ХГСНА прочностью 160 кг/мм2.

Результатом этих исследований и др. впоследствии стало широкое применение в конструкции самолета Ан-124 крепежа с натягом и сплавов высокой чистоты по указанным примесям Д16очТ, В95очТ2 и В93пчТ2, повышение культуры и качества в серийном производстве, внедрение новых технологических процессов, в частности, дробеструйной обработки панелей и деталей и др., что позволило существенно повысить ресурс и коррозионную стойкость силовых конструкций.

По негласной традиции, если в США создавали какой-то военно-транспортный самолет, то затем в СССР строили нечто подобное: С130 – Ан-12, С141 - Ил-76, С5А - Ан-124 и др. После того как в США фирмой Локхид был создан и взлетел в 1967 году самолет С5А, в СССР начали готовить адекватный ответ. Сначала это называлось изделие «200», потом изделие «400», впоследствии самолет Ан-124. Не знаю, по какой причине затянулось его создание, но это нам здорово помогло создать выдающийся самолет, т.к. был проведен огромный объем исследовательских, научно-прикладных и конструкторских работ, а также учтен негативный опыт эксплуатации самолета С5А, в частности, ранние усталостные повреждения крыла в эксплуатации. Они так старались уменьшить массу конструкции планера при создании самолета, что совсем забыли о ресурсе. Когда они начали осуществлять интенсивные перевозки во время войны во Вьетнаме, то быстро обнаружили появление трещин в крыльях, и они сначала были вынуждены уменьшить массу перевозимого груза, а впоследствии поменять на всех самолетах крылья на новые с более высоким ресурсом.

В частности, остро стояла проблема выбора полуфабрикатов (прессованные панели или катаные плиты) для изготовления силовой конструкции крыла самолета Ан-124. Дело в том, что за рубежом для крыльев пассажирских самолетов, которые имеют огромный ресурс, применяются катаные плиты с приклепанными к ним стрингерами (исключение составляют военно-транспортные самолеты С141 и С5А, где используются прессованные панели), а в СССР больше применялись прессованные панели, где обшивка и стрингер составляют одно целое. Это было связано с тем, что в СССР по инициативе руководителя ВИЛС академика Белова А.Ф. в начале 1960-х годов для производства самолета Ан-22 и с учетом на перспективу в отрасли были разработаны и построены уникальные горизонтальные прессы мощностью 20000 тонн для изготовления прессованных панелей и вертикальные прессы мощностью 60000 тонн для изготовления крупногабаритных штамповок. Такого оборудования не было нигде в мире. В конце 1970-х годов такой вертикальный пресс купила в СССР даже металлургическая фирма «Пешине» Франция. В крыльях самолетов Ан-24, Ан-72, Ан-22, Ил-62, Ил-76, Ил-86 и др. широко применялись прессованные панели и поэтому на серийных авиационных заводах было оборудование и технологии их изготовления.

В начале 1970-х годов в Советском Союзе рассматривалась возможность закупки у фирмы Боинг пассажирского широкофюзеляжного самолета В-747. В г. Эверетт, где строили эти самолеты, летала большая делегация руководителей МАП, ОКБ и институтов. Их сильно впечатлило увиденное на производстве и, особенно, автоматическая клепка панелей крыла, а также то, что ресурс этого самолета составлял 100 000 летных часов. Потом специалисты фирмы Боинг прилетали с докладами о самолете В-747 в СССР, где принимала участие и Елизавета Аветовна. После приезда в Киев она собирала нас и рассказывала об этой встрече. Больше всего Шахатуни поразило то, что американцы каждый день одевали новые костюм, галстук и рубашку (всего 3 дня длились эти доклады), так как у нас обычно был один костюм на все случаи жизни.

Также специалисты ЦАГИ, в частности Нестеренко Г.И., считали и показывали по результатам испытаний конструктивных образцов, что живучесть клепаных конструкций выше, чем монолитных конструкций из прессованных панелей, и я с этим всегда соглашался. (Кстати, самолет В-747 так и не купили, а взамен построили Ил-86).
Впечатленные увиденным на Боинге, все отраслевые институты заняли позицию, что надо крыло самолета Ан-124 делать сборной конструкции из катаных плит! Мы же заняли позицию, что крыло надо делать из прессованных панелей. И тут, как говорится, нашла коса на камень. Наши конструкторы и технологи показали, что в случае применения прессованных панелей с законцовкой можно применить фланцевый стык, а не срезной, что упрощает стыковку концевой и центральной части крыла и снижает трудоемкость, упрощает герметизацию кессона крыла. То, что в СССР нет производства длинномерных (до 30 м) катаных плит, как в США. Также на плакатах были показаны и другие преимущества, но я их уже не помню. Но нам надо было еще доказать, что и ресурсные и весовые характеристики такого крыла будут не хуже.

Мы подготовили и согласовали с институтами большую Программу сравнительных испытаний и летом 1976 года я полетел на Ташкентский авиационный завод, где руководителем нашего филиала был Ермохин И.Г. В это время здесь строили самолет Ил-76, крыло которого делали из прессованных панелей. Мне выделили в помощника Демидова К.И. и мы отобрали 10 прессованных панелей из сплава Д16Т, которые отличались, в пределах допуска по прочности и по химическому составу. Согласно «Программы…», завод должен был изготовить сотни различных образцов разных размеров для испытаний на усталость и живучесть и разослать их в ЦАГИ, ВИАМ и КМЗ. Выполнение всей этой работы, не специфичной серийному заводу, потом и обеспечивали Ермохин с Демидовым. Потом я поехал в МАП, где руководство КМЗ решало вопрос, чтобы меня приняли на Воронежском авиационном заводе, а также согласовали и выполнили Программу испытаний. С Москвы я поехал в Воронеж, где производили самолет Ил-86, в конструкции центральной части фюзеляжа которого применялись катаные плиты сплава Д16Т. Я отобрал 3 плиты, согласовал Программу, порешал все вопросы и ознакомился с заводом. В то время там, кроме Ил-86, строили также сверхзвуковой самолет Ту-144. Были построены прекрасные цеха, закуплены и установлены новейшие станки и оборудование, в частности, крыло самолета было монолитным и делалось путем фрезерования катаных плит из теплопрочного сплава АК4-1Т1. Я смотрел на все это великолепие и думал, вот если бы все эти средства, что были вложены в создание самолета Ту-144, вложить в дозвуковую авиацию, то может мы бы и достигли уровня США? Дело в том, что это был «политический» проект, который Советский Союз так и не осилил. Но это из другой области.

Благодаря огромным усилиям Шахатуни и руководства КМЗ, были выбиты в МАП средства и закуплено специальное испытательное оборудование фирмы «Шенк» (США), на котором проводились различные испытания крупногабаритных конструктивных образцов. Занимался этим вопросом Муратов В.В. Было закуплено и менее мощное оборудование и организована бригада под руководством Ханина Г.И., которая занималась многочисленными испытаниями небольших образцов. Потом Елизавета Аветовна создала бригаду фрактографических исследований и «выбила» специальный микроскоп для исследований трещин. Руководителем бригады была назначена Бурченкова Л.М., высококвалифицированный специалист в этой области. Во всех этих вопросах и по уровню доверия к полученным результатам мы за очень короткий срок достигли уровня лабораторий ЦАГИ и ВИАМ, которые считались лучшими в отрасли, а в СССР и подавно!

В результате выполненного огромного объема испытаний в 3-х разных лабораториях сплава Д16Т было показано, что:

Прессованные панели превосходят катаные плиты по статической прочности на 4 кг/мм2;

Прессованные панели превосходят катаные плиты по усталостной долговечности в 1.5 раза;

Скорость роста усталостной трещины в прессованных панелях ниже в 1.5 раза, а вязкость разрушения КС выше на 15%.

Эти преимущества были выявлены только в одном продольном направлении, в котором, собственно, и работают панели в конструкции крыла. Исследования микроструктуры показали, что прессованные панели имеют нерекристаллизованную (волокнистую) структуру, тогда как катаные плиты имеют рекристаллизованную структуру, что и объясняет полученную разницу свойств (см. диссертацию А.Г. Вовнянко «Долговечность и трещиностойкость новых алюминиевых сплавов, используемых в конструкции планера самолета», АН УССР, 1985).

По результатам этих исследований и были выбраны прессованные панели для изготовления крыла самолета Ан-124.

Далее предстояла огромная работа ВИЛС и ВСМОЗ по освоению длинномерных (30 метров) панелей с законцовкой для концевой части крыла, крупногабаритных профилей для лонжеронов и массивных прессованных полос для центральной части крыла, технологии их изготовления, а также по литью крупногабаритных уникальных слитков, создании и освоении оборудования. Следует отметить, что ВСМОЗ был крупнейшим металлургическим заводом. Он изготавливал все виды крупногабаритных прессованных и штампованных полуфабрикатов для большинства самолетов марки «Ан», поэтому у нас были очень тесные и близкие связи. На заводе для выплавки алюминиевых сплавов применялись электрические печи, тогда как на других заводах газовые, что повышало чистоту металла. Также все титановые заготовки для самолетов, а также полуфабрикаты для изготовления корпусов подводных атомных лодок делались на этом заводе, не говоря уже о заготовках лопаток для реактивных двигателей и многое другое. Удивительные были Люди и Коллектив, решающие самые передовые задачи в авиационной отрасли и оборонной промышленности СССР!

После доработок и проведения сертификационных работ и летных испытаний в 1991 году самолет получил сертификат типа и стал обозначаться Ан-124-100. После этого его начали использовать другие авиакомпании, российские и зарубежные. Заложенные в конструкцию запасы позволили поднять грузоподъемность со 120 тонн до 150, а ресурс до 40 000 летных часов и 10 000 полетов. Сейчас, по требованию авиакомпании «Волга-Днепр», рассматривается возможность дальнейшего увеличения ресурса, т.к. многолетние разговоры о восстановлении серийного производства этого самолета, не более чем имитация деятельности и самореклама.
В 1970-х годах за рубежом появилось новое поколение алюминиевых сплавов: 2124, 7175, 2048, 7475, 7010,7050 и технологии изготовления из них полуфабрикатов, а также новые двухступенчатые режимы старения Т76 и Т73 для сплавов серии 7000. Это позволило повысить весь комплекс прочностных и, особенно, ресурсных свойств и коррозионной стойкости. Следует отметить, что в целом США на 10-15 лет обгоняли СССР в этой области (см. статью Вовнянко А.Г., Дриц А.М., «Алюминиевые сплавы в самолетостроении - прошлое и настоящее», Цветные металлы, №8, 2010).

В январе 1977года руководством КМЗ, с подачи Шахатуни, было принято решение о создании группы «Конструкционная прочность металлов», а меня назначили руководителем этой группы. У нас уже работал Захаренко Е.А., и мне предстояло найти лучших ребят для этой работы. Я ходил по отделам, спрашивал, советовался, и мне удалось подобрать отличных (во всех смыслах) молодых специалистов: Воронцова И.С., потом позже Кузнецова В., которые занимались алюминиевыми сплавами, Гречко В.В. – титановые сплавы, и Ковтуна А.П. - конструкционные стали. Позже Елизавета Аветовна предложила расширить исследования, и мы взяли Николайчика А.И., который занимался остаточными напряжениями в штамповках и деталях из них. Эти специалисты проводили огромный объем исследований, анализа полученных результатов, анализа зарубежной литературы, обработки результатов и составления отчетов и др. Поскольку я большую часть времени проводил в длительных командировках, то группой фактически руководила Шахатуни Е.А.

В отделе РИО-1 Шахатуни Е.А. была организована огромная работа по изучению зарубежного опыта в различных направлениях. Выписывались отечественные и зарубежные научные журналы. Специально введенным в штат отдела переводчиком Шнайдманом М.Н. проводились поисковые работы по всему новому в области прочности, ресурса, материалов и сплавов. Все это переводилось, анализировалось и внедрялось. Например, во время войны во Вьетнаме потерпел катастрофу новейший тактический бомбардировщик F-111А. Результаты исследований выявили, что причиной явился незначительный производственный дефект, от которого преждевременно и появилась трещина. За рубежом начались работы в этом направлении, и мы тут не отставали. На многочисленных, обычных и конструктивных образцах проводились испытания и отрабатывались методики расчетов Малашенковым С.П. и Семенцом А.И.. Большинством работ по исследованиям на конструктивных образцах изд. «400» руководил Василевский Е.Т.

Поскольку за длительное время работы с металлургами, изучения специальной литературы и зарубежных исследований я уже начал понимать некоторые закономерности в области создания сплавов, и был хорошо знаком со специалистами и с руководителями институтов и металлургических заводов, то появилась идея создать сплавы конкретно для самолета Ан-124, благо какие были нужны характеристики я знал. Однако это была прерогатива лаборатории №3 ВИАМ, которой руководил Фридляндер И.Н.. Поэтому нужно было обойти их. В ВИЛС была команда друзей-единомышленников с огромными знаниями и желанием делать эту работу - Дриц А.М., Зайковский В.Б. и Шнейдер Г.И. и др. Все мы были молодые и трудности нас не смущали. Шахатуни Е.А. поддержала нас в этом начинании.

Для нижних панелей (работают в полете на растяжение) крыла пассажирских и транспортных самолетов применялись среднепрочные (44-48 кг/мм2) сплавы, где основным легирующим элементом была медь: 2024, Д16 и их производные. Эти сплавы обладают высоким уровнем усталостной долговечности и живучести. Они имеют сравнительно невысокую коррозионную стойкость. Поскольку уровень напряжений в нижних панелях крыла определяется (за исключением концов крыла, где толщина настолько малая, что определяется конструктивно) только ресурсными характеристиками, то их значительное улучшение повышает весовую отдачу и ресурс самолетов. В случае применения прессованных панелей важно было также гарантированно получать нерекристаллизованную структуру. Этому способствует введения небольшого количества циркония в сплав. Очень важная характеристика для сборно-монолитного (11 панелей в корневой части) крыла из прессованных панелей, это длительность роста трещины и остаточная прочность при наличии двухпролетной трещины (разрушен один стрингер и трещина подходит к двум соседним стрингерам). Позже определили, что это крыло выдерживает эксплуатационные нагрузки при полностью разрушенной одной панели. Тут роль играет некоторое снижение легирования сплава. Однако надо было и не потерять значительно предел прочности и, особенно, предел текучести.

Для верхних панелей (работают в полете на сжатие) крыла применялись высокопрочные славы на цинковой основе: 7075, В95. Эти сплавы также широко применялись для крыльев истребителей и бомбардировщиков, где требования к ресурсу не столь высоки. При одноступенчатой термообработке Т1 они имеют высокую прочность, но невысокие ресурсные характеристики и коррозионную стойкость.
Внедренные сначала за рубежом, а затем и в СССР двухступенчатые режимы старения, при некотором снижении прочности, несколько повысили ресурсные характеристики и, существенно, коррозионную стойкость. В СССР был разработаны высоколегированные высокопрочные сплавы В96, а затем и В96ц для ракет одноразового применения. Но они не годились для самолетов с большим ресурсом, и из них нельзя было изготовить крупногабаритные слитки, а следовательно и полуфабрикаты. В США разработали и широко внедрили высоколегированный высокопрочный универсальный сплав 7050, который заменил сплавы 7075, 7175 для всех видов полуфабрикатов. Он превосходит указанные сплавы по статической прочности примерно на 4-5 кг/мм2 и применяется только в двухступенчатых режимах старения. Мы его анализировали, но он нам не подходил по технологическим свойствам, т.к. из него нельзя было отливать крупногабаритные слитки нужного нам размера. Поэтому все усилия были направлены, на то, чтобы несколько повысить пределы прочности и текучести и, существенно, ресурсные характеристики.

Сплав для изготовления поковок и штамповок. Как упоминалось выше, в СССР было 2 сплава АК6Т1 и В93Т1, которые не устраивали конструкторов, и мы применили сплав Д16Т для самолетов Ан-72 и Ан-74.

Особенность сплава В93 в том, что железо в нем есть легирующим элементом. Это позволяет закаливать заготовки в горячую (80 градусов) воду, что снижает поводки и уровень остаточных напряжений. Плата - низкие характеристики живучести. Применяемый в это время в США для этих целей сплав 7050Т73 существенно превосходил все указанные сплавы по всему комплексу свойств.

Но у нас были и другие проблемы, а именно для изготовления длинномерных панелей и массивных прессованных полос поковок и штамповок необходимо отливать крупногабаритные слитки диаметром до 1200 мм, и мы физически не могли идти на высокое легирование. Особенность транспортных самолетов, это высокое расположение крыла, чтобы приблизить фюзеляж к земле и упростить загрузку грузов. В результате этого необходимо применять очень массивные силовые шпангоуты, а также кронштейны крепления шасси, силовые низинки в районе крепления передних стоек и порога заднего грузолюка. В самолетах с нижним расположением крыла такие массивные полуфабрикаты и детали из них не нужны. В этом отличие Ан-124 от В747: в последнем сложных деталей из штамповок намного меньше и они существенно меньшего размера.

Также, в это время стало общеизвестно, что примеси железа и кремния, которые присутствуют во всех этих сплавах, существенно понижают живучесть. Поэтому содержание их в сплавах надо было максимально снижать. Разработка новых сплавов не делается за один год, т.к. надо провести большой комплекс исследований и отработок сначала в лабораториях институтов, а затем в производстве и ОКБ.

Мы только начали проводить эти работы, а уже нужно было определяться, а что же применять для проектирования и изготовления самолета Ан-124? На основании полученных знаний были приняты следующие решения: нижние панели крыла – прессованные панели сплава из сплава Д16 очТ (оч – очень чистый); верхние панели крыла – прессованные панели из сплава В95очТ2; поковки и штамповки из сплава Д16очТ. Также широко применили в конструкции планера листы и профили из алюминиевых сплавов повышенной чистоты (пч)В ответственных силовых конструкциях планера и шасси применены детали из титанового сплава ВТ22 и высоколегированной стали ВНС5. Листовой настил пола грузовой кабины выполнен из листов титанового сплава ВТ6. Также титановые сплавы широко применены в самолетных системах, в частности, воздушных.

Я тут вынужден прервать рассказ о разработке новых сплавов, т.к. все усилия в этот период были направлены на изготовление и поставку полуфабрикатов, а также изготовление деталей из них для постройки первого самолета Ан-124 для летных испытаний и второго самолета для статических испытаний.

Как я уже говорил, что мы применили для самолета крупногабаритные длинномерные (30 м) прессованные панели с законцовкой и профили для лонжеронов. Большая длина выбрана из-за того, чтобы не делать дополнительный поперечный стык, т.к. это масса и трудоемкость. В Верхней Салде, где изготавливали эти полуфабрикаты, не было оборудования для их закалки и растяжки. Такое оборудование было в Белой Калитве Ростовской области, т.к. там планировали развернуть производство длинномерных катаных плит. Но прокатный стан, закупленный за рубежом, стоял и ржавел в ящиках. Для доставки этих панелей сначала в Белую Калитву, а затем в Ташкент, где изготовляли крыло, сделали специальную железнодорожную платформу. И вот однажды меня вызывает главный контролер КМЗ Панин В.Н. и говорит, что надо поехать на металлургический завод в Белую Калитву посмотреть, как там идут дела. Мы втроем, включая начальника производства Котляра О.Г., поехали туда с ознакомительной поездкой. Там уже находилась первая партия панелей. А цех только что построили и заводчане не знали с какой стороны к этим панелям подходить. Начальство прокатилось и уехало в Киев, а меня оставили в заложниках, хотя я не металлург и в этих делах ничего не понимал. Если в Верней Салде панели при закаливании опускались вертикально, то тут горизонтально, т.к. невозможно построить ванну глубиной 31 метр и мгновенно опустить туда панель. При опускании панели нагретой до температуры примерно 380° в холодную воду температурой 20° ее скрючивало страшным образом. Мы потратили, наверное, целый месяц, пока различными экспериментами не обеспечили приемлемую геометрию. Не буду раскрывать все секреты здесь. Потом, опять таки, экспериментальным путем определяли требуемую растяжку полуфабрикатов с целью снятия остаточных напряжений и получения необходимой геометрии. Сложности были из-за различной толщины регулярного сечения и законцовки, а следовательно, различной степени деформации.

Позже мне в помощь прислали ведущего конструктора из отдела крыла Козаченко А.В. Вдвоем стало веселее не только работать, но и выживать, т. к. мы работали по 16 часов в сутки с перерывом только на сон и без выходных, т.к. сроки поджимали. Перешли к следующей стадии – проверке на наличие дефектов выявляемых методами ультразвукового контроля. И тут мы ужаснулись! Число таких дефектов (расслоений) внутри металла достигало 3000-5000 штук. И они не располагались равномерно, а какими-то пятнами, как будто бы кто-то «расстреливал» эту панель из дробовика. Никто не мог гарантировать, что это не развалиться в первом же полете. И так вся первая партия панелей. Делать нечего - мы поехали в Киев докладывать начальству. После того, как я доложил Балабуеву П. В., он собрал совещание у генерального конструктора Антонова О.К.. Было немного народу. Кроме перечисленных были главный технолог Павлов И.В., начальник подразделения конструкции планера Брагилевский В.З., начальник отдела крыла Гиндин Г.П., мы с Козаченко и еще насколько человек. Я кратко доложил о проблемах. После чего Олег Константинович поставил вопрос - что делать и какие будут предложения? Балабуев П.В., который как главный конструктор по самолету Ан-124 отвечал за сроки, предложил разрезать панели и сделать дополнительный поперечный стык. Брагилевский долго говорил, но что он предлагал - я так и не понял. Когда мне дали слово, то я сказал, что мы постараемся и сделаем длинномерные панели. Зачем я это говорил, до сих пор не понимаю, т.к. от меня ничего не зависело. Наверное, по молодости. После чего Олег Константинович взял всю ответственность на себя и принял решение продолжить работу по обеспечению качественных длинномерных панелей. Фактически качество по дефектам обеспечивали в Верхней Салде, а не в Белой Калитве.

Поехали мы сразу после совещания в Белую Калитву. Там было огромное совещание представителей институтов, руководителей из Ташкента, которых тоже поджимали сроки (они изготавливали центральную и концевые части крыла), также прилетел Балабуев П.В.. После совещания, перед отлетом, Балабуев отвел меня в сторону и сказал - «что хочешь делай, но обеспечь панелями первый самолет!». Пришлось нам с Козаченко здорово рисковать и брать ответственность на себя. Мы уже ориентировались не только на количество дефектов, но и на то, как они располагаются в конструкции детали, т.к. значительное количество металла в процессе фрезерования удаляется. В сложных ситуациях созванивались с конструкторами в Киеве и они анализировали расположение дефектов и их влияние на прочность. На протяжении нескольких месяцев, с октября 1978 по апрель 1979 года, мы обеспечили необходимое количество панелей для изготовления первого крыла, хотя количество дефектов в них достигало иногда до 1000-1500 шт. Работа, ответственность и напряжение до того изнуряли, что через 3 недели начинала «ехать крыша» и мы на 2-3 дня ехали домой с докладом и хотя бы одним глазом увидеть семью. После доклада Балабуеву он уже на следующий день вызывал и спрашивал, чего ты здесь сидишь, давай езжай обратно. В одну из таких поездок из Белой Калитвы в Киев была метелица. А в степи переметает все трассы и движение останавливается. Пришлось сутки добираться с Белой Калитвы до Ростова, хотя расстояние там около 200 км. Платил дальнобойщикам. Приезжаю я в Киев, захожу к Шахатуни и говорю, что вот так и так, пришлось добираться, потратиться и прошу компенсировать. А Елизавета Аветовна говорит: «Я Вас туда не посылала. Идите к тому, кто Вас туда послал». Пришлось идти мне к Балабуеву и он выписал мне аж 20 рублей. А так никаких премий, т.к. я числился в отделе РИО-1, где был премиальный фонд для тех работ, которые делал отдел, а я работал на Балабуева и Шахатуни это не нравилось. Вот такие были пироги! Я точно не помню, но, наверное, около 50% панелей уходило в брак. Значительное количество некондиционных панелей мы забрали в Киев, где потом изготовляли образцы и проводили различные испытания.

Только в конце апреля я приехал в Киев, как новая беда - утяжина в законцовке (расслоение внутри металла на всю длину законцовки). Опять посылают в Верхнюю Салду, а заодно и в Ташкент. Было 11-е мая, в Ташкенте уже плюс 30° , думаю - на Урале не будет сильно холодно, и я в костюме полетел в Свердловск. Прилетаю туда, а там плюс 3° и идет снег. Замерз как «цуцык». Пришлось заезжать к родственникам жены и утепляться. Пока я добирался до Верхней Салды, заводчане вместе с ВИЛС уже решили проблему – уменьшили скорость прессования в зоне законцовки и дефект исчез.

Летом 1979 года пришла новая беда, теперь уже из Ташкента. Начали растрескиваться огромные заготовки деталей из поковок сплава Д16очТ после закалки. Для первых самолетов детали делают из поковок, т.к. изготовление штампов длительный процесс. В Министерстве собрали и срочно отправили туда большую Комиссию из представителей ВИАМ, ВИЛС и МАП. От КМЗ - мы с Шахатуни. Приехали мы туда, а там порядка 10 заготовок деталей уже треснули. Поскольку поковки очень огромные, например, для силовых шпангоутов около 4 м в длину, шириной 0.8 м, толщиной 0.3 м и массой до 3 тонн, то ее предварительно фрезеруют, оставляя только черновой припуск. Это необходимо, чтобы скорость охлаждения была высокой и деталь имела требуемые прочностные и коррозионные свойства. После ознакомления с ситуацией сидим мы все члены комиссии за большим столом и думаем, что же это за напасть, что делать? В это время приходят все новые и новые сообщения: еще треснула заготовка и еще. Счет пошел уже за 2 десятка!

Смотрю, лицо Елизаветы Аветовны стало желтым, как пергамент. Я тоже испугался, думал, что если не расстреляют, то точно сошлют в Сибирь, ведь это КМЗ настояло, чтобы поковки и штамповки делались из сплава Д16очТ. Срочно прилетел Балабуев П.В. Отвел меня в сторону советоваться, что делать. Я начинаю «блеять», типа надо делать как американцы для самолета С5А из сплава В95очТ2. А мы совместно с институтами уже к тому времени провели работы по этому сплаву для поковок и штамповок и он начал применяться для истребителей. Но Петр Васильевия говорит – «Нет, пусть они (то есть ВИАМ) предлагают и отвечают. С нас хватит!». ВИАМ предложил сплав В93пчТ2. Поскольку предел прочности этих сплавов одинаковый (44кг/мм2), то не пришлось менять чертежи. А поскольку сплав В93 закаливается в горячую воду, то закалочных трещин в крупногабаритных заготовках из поковок не возникает, в отличие от сплава Д16, который закаливается в холодную воду. Написала Комиссия Решение, где Елизавета Аветовна все-таки настояла, чтобы был пункт, типа продолжить работы по сплаву Д16очТ для поковок и штамповок изд. «400». Там же была описана процедура списания этих заготовок и поковок, а это около 300 тонн высококачественного металла, указание выделить фонды для изготовления новых поковок из сплава В93 и многое другое. И послали меня в МАП, чтобы я утвердил это Решение у заместителя министра Болбота А.В.. Приезжаю я в МАП, захожу в 6-е Главное Управление, которому КМЗ непосредственно подчинялось, к главному инженеру Орлову Н.М.. Поскольку в Решении был «скользкий» пункт по сплаву Д16, но мы надеялись, что Болбот А.В. его не «увидит» и подпишет. Посадил меня Орлов Н.М. под кабинетом Болбота А.В. и говорит: «Как увидишь, что он идет, так сразу зови меня». Сижу я под дверью кабинета и вдруг появляется Ануфрий Викентьевич, и говорит: «Ну чего сидишь – заходи». Взял Решение и начал быстро читать. Дошел до этого злополучного пункта и говорит: «Я не принимаю технические решения, а могу только дать указание институтам». Исправляет этот пункт и подписывает Решение. Я, как «побитая собака», иду к Орлову Н.М. и получаю от него нагоняй, что не надо было заходить к Болботу, а надо было звать его. Пошел он сам к Ануфрию Викентьевичу, чтобы оставить тот пункт в первоначальном виде, и вышел ни с чем. Приехал я в Киев, зашел к Балабуеву П.В. и говорю, что я больше я не хочу заниматься сплавом Д16 для поковок и пусть он скажет об этом Елизавете Аветовне. На что он мне говорит: «Иди сам и скажи. Она умная женщина, она поймет». Но Елизавета Аветовна обиделась и несколько недель со мной не разговаривала. Но потом у нас возобновились наши нормальные производственные отношения и мы, как были «друзьями», так и остались.

Продолжились мои поездки на металлургические заводы и в Ташкент, для обеспечения постройки первого, а затем и второго самолета Ан-124.

Весной 1982 года Петр Васильевич взял меня на совещание в Министерство, которое проводил министр Силаев И.С.. Рассматривался вопрос обеспечения полуфабрикатами серийного производства самолета Ан-124. Серийное производство запустили не ожидая результатов летных испытаний, т.к. СССР уже сильно отстал от США по количеству и качеству стратегических военно-транспортных самолетов. Мы ехали поездом в СВ, а я взял 0.5 армянского коньяка. Поужинали и выпили. Я окосел, а Балабуеву П.В. хоть бы что. Утром он поехал на квартиру привести себя в порядок, а я поехал в МАП. Встретились уже в зале заседаний, где начали собираться различные руководители – я «с бодуна», а Петр Васильевич, как «огурчик». Потом Петр Васильевич говорит - «у меня дела и я пошел, а ты докладывай». Я впал в ступор. Пришел Министр, академики, начальники институтов и руководители металлургических заводов и Силаев спрашивает, ну где здесь докладчик. Делать нечего, я беру плакаты и иду их развешивать. Когда я готовил плакаты на совещания, то Елизавета Аветовна меня учила - «там, говорит, начальники, они пожилые и плохо видят. Поэтому Вы пишите на плакатах мало и крупными буквами». Я так и сделал. В общем, заикаясь и дрожа с перепугу, я начал доклад. Сначала я показал какие сплавы применяются за рубежом и что мы отстаем по характеристикам. Иван Степанович вопросительно обернулся к руководителям ВИАМ и ВИЛС, на что те стали доказывать, что это не так и у нас все одинаково. Поскольку меня никто не поддержал, пришлось переходить ко второму вопросу. Я доложил о многочисленных дефектах в полуфабрикатах и большом количестве брака. Тут уже было крыть нечем и все согласились. В протоколе записали, чтобы институты провели работы и повысили качество полуфабрикатов с целью значительного сокращения брака, а металлургические заводы увеличили количество выпускаемых полуфабрикатов, для обеспечения серийного производства самолета. А я так и не понял, почему Петр Васильевич так подставил меня? Наверное, не хотел ссориться с руководителями институтов?

Впервые в отрасли для всех полуфабрикатов самолета Ан-124 были внедрены паспорта, где приводился весь комплекс свойств. Были использованы результаты испытаний не только ВИАМ, но и КМЗ. Также впервые в отрасли для этих полуфабрикатов внедрили на металлургических заводах контроль вязкости разрушения К1С.

Параллельно в ВИЛС на протяжении 2-х лет широко развернулись работы по исследованию влияния различных легирующих элементов на весь комплекс свойств. Отливались многочисленные слитки и прессовались полосы, а из ковочных сплавов ковали поковки. Отрабатывалась технология их изготовления, температурные режимы и режимы старения. После чего изготовлялись образцы и проводились испытания на прочность, ресурсные характеристики и коррозионную стойкость в ВИЛС и КМЗ. Во все исследуемые сплавы вводился цирконий, как легирующая добавка, т.к. это улучшало ресурсные свойства (См. статью Вовнянко А.Г., Дриц А.М. «Влияние состава на сопротивление усталости и трещиностойкость прессованных полуфабрикатов из сплавов систем Al-Cu-Mg и Al-Zn-Mg-Cu. Изв. АН СССР. Металлы. 1984, №1). После большого объема исследований были выбраны химические составы и технология изготовления для промышленного опробования. Была написана «Программа исследований…» и я поехал в Верхнюю Салду, где договорился с руководством об изготовлении опытной партии длинномерных панелей и крупногабаритных поковок самолета Ан-124 из новых сплавов. Удивительное было время!!! Потом эти полуфабрикаты прибыли на КМЗ, где из них были изготовлены образцы и отправлены для испытаний в ВИЛС, ЦАГИ и ВИАМ. Результаты испытаний подтвердили преимущества этих сплавов по всему комплексу свойств по сравнению со сплавами применяемые для изготовления ответственных силовых конструкций самолета Ан-124 (см. статью Вовнянко А.Г., Дриц А.М., Шнейдер Г.И. «Монолитные конструкции и алюминиевые сплавы с цирконием для их изготовления». Технология легких сплавов. Август, 1984).
Потом позвонил Дриц А.М. и сказал: «Будем оформлять авторские изобретения на указанный состав сплавов» и что туда надо включить и специалистов ВИАМ. Я сильно возмутился: «А они то зачем? Они ведь ничего не делали». На что, опытный в этих делах, Александр Михайлович, ответил: «Если мы их не включим в авторский коллектив, то фиг мы внедрим эти сплавы», т.к. без одобрения ВИАМ невозможно было применить что-то в самолетах. Я также зашел к Елизавете Аветовне и предложил, чтобы она вошла в состав авторов. На это она сильно возмутилась и сказала: «А я то здесь при чем? Вы занимались, вот и достаточно». Я пытался ей доказать, что без ее поддержки ничего этого не было бы. Но она не стала со мной дальше разговаривать. Вот что значит благородный и интеллигентный человек! Я ведь знал на КМЗ начальников, которые заставляли подчиненных вписывать себя в Авторские, иначе не подписывали документы. Дрицом А.М. были поданы заявки и мы получили Авторские свидетельства №1343857, зарегистрирован 8.06.1987г., №1362057, 22.08.1987г., №1340198, 22.05.1987г.). В дальнейшем эти сплавы получили новые наименования 1161, 1973 и 1933.

Но это еще не все Достижения Елизаветы Аветовны. После того как самолет уже был запущен в серию и проведены статические и, частично, усталостные испытания (кстати, по инициативе Шахатуни Е.А., на одном экземпляре самолета, что еще никому в мире не удавалось), Елизавета Аветовна сумела внедрить эти новые сплавы в серийное производство самолета Ан-124! Нижние панели крыла стали изготавливать из сплава 1161Т, верхние – из 1973Т2, штамповки - из 1933Т2. В дальнейшем во всех новых самолетах Ан-225, Ан-70, Ан-148 и др. эти сплавы стали широко применяться.

В 1986 разработчики этих сплавов, включая и меня, стали лауреатами Премии Совета Министров СССР.

В 1982 году я пришел к Елизавете Аветовне и сказал, что хочу заниматься самолетами, т.к. в отделе прочности у меня не было перспектив. Шахатуни пошла к Петру Васильевичу и он дал добро на мой перевод в недавно созданную службу ведущих конструкторов по самолету Ан-70. Вот таким удивительным и светлым Человеком была Шахатуни Елизавета Аветовна!

В 1985 году я был назначен руководителем группы ведущих конструкторов по созданию самолета Ан-225. И здесь уже мы сразу внедрили новые алюминиевые сплавы 1161Т, 1972Т2 и 1993Т во всех силовых конструкциях крыла, фюзеляжа и хвостового оперения. Это позволило обеспечить невиданную в мировом самолетостроении грузоподъемность – 250 тонн, при обеспечении заданном в ТЗ ресурсе. Несомненно, что в дальнейшем этот ресурс будет значительно увеличен по аналогии с самолетом Ан-124

В начале 1990-х годов позвонил Дриц А.М. и пригласил меня сделать доклад на фирме Боинг в Москве. Там собрались ведущие специалисты с ВИАМ и ВИЛС, а Боинг недавно открыл свой филиал на ул. Тверской. Я докладывал о широком применении в конструкции самолетов марки «Антонов» фрезерованных монолитных деталей, а также их характеристики усталости и живучести. Спустя какое-то время к нам в Киев приехал руководитель филиала Боинга по странам СНГ Кравченко С.В. Я завел его к первому заместителю генерального конструктора Киве Д.С., где он предложил сделать совместную исследовательскую работу по монолитному цельнофрезерованному гермошпангоуту в носовой части фюзеляжа (это где заканчивается гермозона и спереди устанавливается локатор). Эти гермошпангоуты на всех самолетах и нас и за рубежом были клепаной конструкции. Кива Д.С. сказал, что если Боинг заплатит 1 миллион долларов, то КМЗ согласен на проведение такой работы. Когда мы вышли, Сергей сказал: «У меня бюджет всего 3 миллиона долларов на все СНГ, поэтому это нереально». В результате они начали работать с ММЗ им. Илюшина С.В. по багажной полке с применением фрезерованных деталей.

В начале 1990-х годов Фридляндер И.Н. «умудрился» по новой запатентовать сплавы 1161, 1973 и 1933, введя в основной химический состав примеси в сотых долях %, которые всегда присутствуют во всех алюминиевых сплавах. Про нас, разработчиков, естественно, забыл.

То, что мы разработали и применили более 30 лет назад в самолете Ан- 124, в настоящее время применяет фирма Боинг в конструкциях новейших самолетов В787 «Дримлайнер», В747-8 и др. Даже название самолета стащили: «Дрим-Мечта-Мрія», ведь это название придумал Балабуев П.В. для самолета Ан-225. В этих самолетах широко применяются монолитные фрезерованные детали из алюминиевых сплавов и, особенно, из титановых сплавов. Дело в том, что механическая обработка сложных по геометрии деталей на современных станках с высочайшей скоростью фрезерования оказывается существенно дешевле в производстве, чем изготовление сборной конструкции, где много ручного труда. Значительно снижается количество деталей, рабочих операций, рабочих мест, крепежных элементов, оснастки и т.д. Боинг даже создал с ВСМОЗ (теперь АВИСМА) совместное предприятие по производству заготовок и деталей из титановых сплавов.

Понравилась статья? Поделиться с друзьями: