Понятия модели, физического явления и среды

По способу отображения действительности различают три ос­новных вида моделей - эвристические, физические и матема­тиче­ские.

Эвристические модели , как правило, представляют собой об­разы, рисуемые в воображении человека. Их описание ве­дется словами естественного языка и, обычно, неоднозначно и субъек­тивно. Эти модели неформализуемы, т. е. не описыва­ются фор­мально-логическими и математическими выраже­ниями, хотя и рождаются на основе представления реальных процессов и явле­ний. Эвристическое моделирование - основное средство вырвать­ся за рамки обыденного и устоявшегося. Но способность к такому моделированию зависит, прежде всего, от богатства фантазии че­ловека, его опыта и эрудиции. Эвристиче­ские модели используют­ся на начальных этапах проектирова­ния (или других видов дея­тельности), когда сведения о разраба­тываемом объекте еще скуд­ны. На последующих этапах проек­тирования эти модели заменя­ются на более конкретные и точ­ные.

Физические модели - материальны, но могут отличаться от реального объекта или его части размерами, числом и материа­лом элементов. Выбор размеров ведется с соблюдениемтеории подобия. К физическим моделям относятся реальные изделия, образцы, экспериментальные и натурные модели.

Физические модели подразделяются на объемные (модели и ма­кеты) и плоские (тремплеты).

Под моделью понимают изделие, являющееся упрощенным по­добием исследуемого объекта.

Под тремплетом понимают изделие, являющееся плоским мас­штабным отображением объекта в виде упрощенной ортого­нальной проекции или его контурным очертанием. Тремплеты вырезают из пленки, картона и т. п. и применяют при исследова­нии и проектировании зданий, установок, сооружений.

Под макетом понимают изделие, собранное из моделей или тремплетов.

Физическое моделирование - основа наших знаний и средство проверки наших гипотез и результатов расчетов. Такая модель позволяет охватить явление или процесс во всемих многообра­зии, наиболее адекватна и точна, но достаточно дорога, трудо­емка и менее универсальна. В том или ином виде с физическими моделя­ми работают на всех этапах проектирования.

Математические модели - формализуемые, т. е. представля­ют собой совокупность взаимосвязанных математических и фор­мально-логических выражений, как правило, отображающих ре­альные процессы и явления (физические, психические, социаль­ные и т. д.). Модели по форме представления могут быть:

Аналитические, их решения ищутся в замкнутом виде, в виде функциональных зависимостей. Удобны, при анализе сущности описываемого явления или процесса, но отыскание их решений бывает весьма затруднено;

Численные, их решения - дискретный ряд чисел (таблицы). Модели универсальны, удобны для решения сложных задач, но не наглядны и трудоемки при анализе и установлении взаимо­связей между параметрами. В настоящее время такие модели реализуют в виде программных комплексов - пакетов программ для расчета на компьютере. Программные ком­плексы бывают прикладные, привязанные к предметной об­ласти и конкретной системе, явлению, процессу, и общие, реализующие универ­сальные математические соотношения (например, расчет сис­темы алгебраических уравнений).

Построение математических моделей возможно следующими способами:

Аналитическим путем, т. е. выводом из физических законов, математических аксиом или теорем;

Экспериментальным путем, т. е. посредством обработки ре­зультатов эксперимента и подбора аппроксимирующих (при­ближенно совпадающих) зависимостей.

Математические модели более универсальны, дешевы, позво­ляют поставить "чистый" эксперимент (т. е. в пределах точности модели исследовать влияние какого-то отдельного фактора при постоянстве других), прогнозировать развитие явления или про­цесса. Математические модели - основа построения компьютер­ных моделей и применения вычислительной техники. Резуль­таты математического моделирования нуждаются в обязатель­ном со­поставлении с данными физического моделирования - с целью проверки полученных данных и для уточнения самой мо­дели.

К промежуточным между эвристическими и математическими моделями можно отнести графические модели , представляю­щие различные изображения - схемы, графики, чертежи. Так, эскизу (упрощенному изображению) некоторого объекта в зна­чительной степени присущи эвристические черты, а в чертеже уже конкрети­зируются внутренние и внешние связи моделируе­мого объекта.

Промежуточными также являются и аналоговые модели . Они позволяют исследовать одни физические явления или математи­че­ские выражения посредством изучения других физических явле­ний, имеющих аналогичные математические модели.

Выбор типа модели зависит от объема и характера исходной информации о рассматриваемом объекте и возможностей проек­тировщика, исследователя. По возрастанию степени соответст­вия реальности модели можно расположить в следующий ряд: эври­стические (образные) - математические - физические (экс­пери­ментальные).

Технические системы различаются по назначению, устрой­ст­ву и условиям функционирования. Следовательно, можно и нужно вносить соответствующие различия и в их модели.

В зависимости от целей исследования выделяют следующие модели:

Функциональные, предназначенные для изучения функцио­нального назначения элементов системы, внутренних связей и связей с другими системами;

Функционально-физические, предназначенные для изучения сущности и назначения физических явлений, используемых в системе, их взаимосвязей;

Модели процессов и явлений, таких как кинематические, проч­ностные, динамические и другие, предназначенные для иссле­дования тех или иных характеристик системы, обеспечиваю­щих ее эффективное функционирование.

Модели также подразделяют на простые и сложные, однород­ные и неоднородные, открытые и закрытые, статические и дина­мические, вероятностные и детерминированные.

Часто говорят о технической системе как простой или слож­ной, закрытой или открытой и т. п. В действительности же под­ра­зумевается не сама система, а возможный вид ее модели, ак­центи­руется особенность ее устройства или условий работы.

Четкого правила разделения систем на сложные ипростые не существует. Обычно признаком сложных систем служит много­об­разие выполняемых функций, большое число составных час­тей, разветвленный характер связей, тесная взаимосвязь с внеш­ней средой, наличие элементов случайности, изменчивость во времени и другие. Понятие сложности системы - субъективно и определя­ется необходимыми для ее исследования затратами времени и средств, потребным уровнем квалификации, т. е. за­висит от кон­кретного случая и конкретного специалиста.

Подразделение систем на однородные и неоднородные произ­водится в соответствии с заранее выбранным призна­ком: исполь­зуемые физические явления, материалы, формы и т. д. При этом одна и та же система при разных подходах может быть и однород­ной, и неоднородной. Так, велосипед - однородная механическая система, поскольку использует механические способы передачи движения, но неоднородная по типам материалов, из которых из­готовлены отдельные части (резиновая шина, стальная рама, ко­жаное седло).

Все системы взаимодействуют с внешней средой, обменива­ются с нею сигналами, энергией, веществом. Системы относят к открытым , если их влиянием на окружающую среду или воз­дей­ствием внешних условий на их состояние и качество функ­циони­рования пренебречь нельзя. В противном случае системы рассмат­ривают какзакрытые , изолированные.

Динамические системы , в отличие отстатических , нахо­дятся в постоянном развитии, их состояние и характеристики изменяют­ся в процессе работы и с течением времени.

Характеристики вероятностных (иными словами,стохас­ти­ческих) систем случайным образом распределяются в про­странст­ве или меняются во времени. Это является следствием как случай­но, о распределения свойств материалов, геометриче­ских размеров и форм объекта, так и случайного характера воз­действия на него внешних нагрузок и условий. Характеристикидетерминирован­ных систем заранее известны и точно предска­зуемы.

Знание этих особенностей облегчает процесс моделирова­ния, так как позволяет выбрать вид модели, наилучшим образом соот­ветствующей заданным условиям.

Выбор модели того или иного вида основывается на выделе­нии в системе существенных и отбрасывании второстепенных факторов и должен подтверждаться исследованиями или пред­ше­ствующим опытом. Наиболее часто в процессе моделирова­ния ориентируются на создание простой модели, поскольку это позво­ляет сэкономить время и средства на ее разработку. Од­нако повы­шение точности модели, как правило, связано с рос­том ее сложно­сти, так как необходимо учитывать большое число факторов и связей. Разумное сочетание простоты и по­требной точности и ука­зывает на предпочтительный вид мо­дели.

Модель – это материальный или идеальный объект, замещающий исследуемую систему и адекватным образом отображающий ее существенные стороны. Модель объекта отражает его наиболее важные качества, пренебрегая второстепенными .

Компьютерная модель (англ. computer model), или численная модель (англ. computational model) – компьютерная программа, работающая на отдельном компьютере, суперкомпьютере или множестве взаимодействующих компьютеров (вычислительных узлов), реализующая представление объекта, системы или понятия в форме, отличной от реальной, но приближенной к алгоритмическому описанию, включающей и набор данных, характеризующих свойства системы и динамику их изменения со временем.

Говоря о компьютерной реконструкции, мы будем подразумевать разработку компьютерной модели определенного физического явления или среды.

Физическое явление – процесс изменения положения или состояния физической системы. Физическое явление характеризуется изменением определенных физических величин, связанных между собой. Например, к физическим явлениям относятся все известные виды взаимодействия материальных частиц.

На рисунке 1 представлена компьютерная динамическая модель изменения магнитного поля, образованного двумя магнитами, в зависимости от положения и ориентации магнитов относительно друг друга.

Рисунок 1 - Компьютерная динамическая модель изменения магнитного поля

Представленная компьютерная модель отражает динамику изменения параметров магнитного поля методом графической визуализации изолиниями. Построение изолиний магнитного поля осуществляется в соответствии с физическими зависимостями, учитывающими полярность магнитов при их определенном расположении и ориентации в плоскости.

Рисунок 2 иллюстрирует компьютерную имитационную модель течения воды в открытом русле, ограниченном стенками длинного стеклянного лотка.

Рисунок 2 - Компьютерная имитационная модель течения воды в открытом русле

Расчет параметров открытого потока (формы свободной поверхности, расхода и напора воды и др.) в данной модели выполняется в соответствии с законами гидродинамики открытых потоков. Расчетные зависимости составляют основу алгоритма, согласно которому производится построение модели потока воды в виртуальном трехмерном пространстве в реальном времени. Представленная компьютерная модель позволяет произвести геометрические замеры отметок поверхности воды в различных точках по длине потока, а также, определить расход воды и другие вспомогательные параметры. На основании полученных данных можно исследовать реальный физический процесс.

В приведенных примерах рассматриваются компьютерные имитационные модели с графической визуализацией физического явления. Однако компьютерные модели могут и не содержать визуальной или графической информации об объекте исследования. Тот же самый физический процесс или явление можно представить в виде набора дискретных данных, причем используя тот же алгоритм, на котором строилась имитационная визуальная модель.

Таким образом, основной задачей построения компьютерных моделей является функциональное исследование физического явления или процесса с получением исчерпывающих аналитических данных, а уже второстепенных задач может быть много, в том числе и графическая интерпретация модели с возможностью интерактивного взаимодействия пользователя с компьютерной моделью.

Механическая система (или система материальных точек) – совокупность материальных точек (или тел, которые по условию задачи оказалось возможным рассматривать как материальные точки).

В технических науках среды разделяют на сплошные (непрерывные) и дискретные среды. Данное разделение является в некоторой степени приближением или аппроксимацией, поскольку физическая материя по своей сути дискретна, а понятие непрерывности (континуума) относится к такой величине, как время. Другими словами, такая «сплошная» среда как, например, жидкость или газ состоит из дискретных элементов – молекул, атомов, ионов и т.д., однако математически описать изменение во времени этих структурных элементов крайне сложно, поэтому к таким системам вполне обосновано применяются методы механики сплошных сред.

– Дворецкий С.И., Муромцев Ю.Л., Погонин В.А. Моделирование систем. – М.: Изд. центр «Академия», 2009. – 320 с.

"Белов, В.В. Компьютерная реализация решения научно-технических и образовательных задач: учебное пособие / В.В. Белов, И.В. Образцов, В.К. Иванов, Е.Н. Коноплев // Тверь: ТвГТУ, 2015. 108 с."

Модель (от лат. modulus - мера, образец, норма)

а) в самом широком смысле - любой мысленный или знаковый образ моделируемого объекта (оригинала). К их числу относятся гносеологические образы (воспроизведение, отображение исследуемого объекта или системы объектов в виде научных описаний, теорий, формул, систем упражнений и т. п.), схемы, чертежи, графики, планы, карты и т. д.; б) специально создаваемый или специально подбираемый объект, воспроизводящий характеристики изучаемого объекта. Большую роль в современной науке играют т.наз. знаковые М., позволяющие в виде формул, уравнений, графиков и т. п. отображать существенные отношения между изучаемыми предметами, явлениями, различные процессы. Пример знаковой М. - дифференциальное уравнение в математике, описывающее (моделирующее) протекание во времени к.-л. физического процесса. Знаковые М. широко используются в информатике при создании соответствующих программ для ЭВМ; к их числу принадлежат М., воспроизводящие решение сложных задач, специфических для деятельности человеческого мозга и имеющих творческий характер (М., относимые в информатике к искусственному интеллекту). Между М. и изучаемым объектом (оригиналом), который может представлять собой весьма сложную систему, должно существовать сходство в каких-то физических характеристиках, или в структуре, или в функциях (см.: Моделирование).

В математической логике под М. понимается интерпретация к.-л. логико-математических предложений и их систем. В разрабатываемой в математической логике теории М. под М. понимается произвольное множество элементов с определенными на нем функциями и предикатами (см.: Семантика логическая). Понятие М. является одним из центральных и сложных понятий теории познания, поскольку оно опирается на понятие отражения, истины, сход-ства, различия, правдоподобия и т. п.; роль его в методологии науки огромна.


Словарь по логике. - М.: Туманит, изд. центр ВЛАДОС . А.А.Ивин, А.Л.Никифоров . 1997 .

Синонимы :

Смотреть что такое "модель" в других словарях:

    модель - и, ж. modèle m., ит. modello, нем. Model, пол. model. 1. Образец, с которого снимается форма для отливки или воспроизведения в другом материале. БАС 1. Точить модель посуды, наводить резьбы, делать формы 15. 11. 1717. Контракт с Антонио Бонавери … Исторический словарь галлицизмов русского языка

    - (модель совокупного спроса и совокупного предложения) макроэкономическая модель, рассматривающая макроэкономическое равновесие в условиях изменяющихся цен в краткосрочном и долгосрочном периодах … Википедия

    1) воспроизведение предмета в уменьшенных размерах; 2) натурщик, служащий образцом при живописи или скульптуре; 3) образец, по которому изготовляют какое либо изделие. Словарь иностранных слов, вошедших в состав русского языка. Павленков Ф., 1907 … Словарь иностранных слов русского языка

    Используемая в соционике модель функционирования психики человека. Эта модель гипотетически выделяет в психике восемь функций, схематически располагаемых в виде прямоугольника 2х4 в четырёх горизонтальных уровнях и двух вертикальных блоках.… … Википедия

    - [дэ], модели, жен. (франц. modele). 1. Образец, образцовый экземпляр какого нибудь изделия (спец.). Модель товара. Модель платья. 2. Воспроизведенный, обычно в уменьшенном виде, образец какого нибудь сооружения (тех.). Модель машины. 3. Тип,… … Толковый словарь Ушакова

    См. пример … Словарь синонимов

    модель - Масштабный предметный образец объекта или его частей, отображающий их строение и действие [Терминологический словарь по строительству на 12 языках (ВНИИИС Госстроя СССР)] модель Представление системы, процесса, ИТ услуги, конфигурационной единицы … Справочник технического переводчика

    - (model) Упрощенная система, используемая для имитирования определенных аспектов реальной экономики. Экономическая теория вынуждена использовать упрощенные модели: реальная мировая экономика настолько велика и сложна, что ее просто невозможно… … Экономический словарь

    - (франц. modele, от лат. modulus мера, образец, норма), в логике и методологии науки аналог (схема, структура, знаковая система) определ. фрагмента природной или социальной реальности, порождения человеч. культуры, концептуально теоретич.… … Философская энциклопедия

    Абстрактное или вещественное отображение объектов или процессов, адекватное исследуемым объектам (процессам) в отношении некоторых заданных критериев. Напр., математическая модель слоенакопления (абстрактная модель процесса), блок диаграмма… … Геологическая энциклопедия

    - (IS LM model) Модель, которая часто используется в качестве исключительно простого примера общего равновесия (general equilibrium) в макроэкономике. Кривая IS показывает сочетания национального дохода Y и процентной ставки r, при которых… … Экономический словарь

Книги

  • Модель. Т. 3 , Ли Со ин. Юная Джей Су мечтает стать выдающимся живописцем. Приехав на учебу в Европу, она ведет рассеянную жизнь типичного студента, пока однажды вечером ее подруга не приводит к ней в дом…

Подчеркнем одно коренное отличие физического метода исследования от математического.
В математике при образовании основных понятий раз и навсегда отвлекаются от качественного своеобразия объектов, выделяя существенные для математики количественные отношения, и далее имеют дело с логическими следствиями первона-чальных положений. Например, в геометрии раз и навсегда вводится понятие точки, и затем с ним оперируют, не заботясь о том, существуют ли точки в природе.
В физике при анализе каждого нового явления нужно уметь каждый раз выделять существенное в нем и, следовательно, определенная идеализация, упрощение реальных обстоятельств всегда должны иметь место. Например, в физике тоже вводится понятие материальной точки как тела, обладающего массой, но не имеющего размеров. Однако в физике это понятие всегда рассматривается как некоторое приближение к действительности, которое справедливо только при определенных услови-

ях. Каждый раз нужно выяснять, выполняются эти условия или нет. Так, при рассмотрении притяжения планет к Солнцу размеры планет и Солнца намного меньше расстояний между ними. Поэтому и планеты и Солнце можно считать материальными точками. Такое упрощение позволяет сравнительно легко установить характер движения планет.
Но если расстояния между взаимодействующими телами не очень велики по сравнению с их размерами, то считать их материальными точками уже нельзя. Например, движение искусственных спутников и даже Луны заметно зависит от размеров и формы Земли.
Итак, при рассмотрении явлений нужно прежде всего определить, какой упрощенной моделью можно заменить происходящее в действительности сложное явление.

Еще по теме Упрощенная модель явления:

  1. § 30.2. УПРОЩЕННАЯ СИСТЕМА НАЛОГООБЛОЖЕНИЯ, УЧЕТА И ОТЧЕТНОСТИ ДЛЯ МАЛЫХ ПРЕДПРИЯТИЙ
  2. 1.2.1 Упрощенный аналитический метод расчета вентиляции салона
  3. Многие явления и процессы глобализма опознаются как декадентские, типологически близкие явлениям упадка культуры
  4. Мефоприятия к упрощению и Сокращению судебной процедуры.
  5. Упрощение администрирования налогообложения физических лиц.
  6. Приложение 12. О праве общественных организаций на учреж­дение предприятий по упрощенной системе налогообложения

Каждый современный человек ежедневно сталкивается с понятиями «объект» и «модель». Примерами объектов являются как предметы, доступные для осязания (книга, земля, стол, ручка, карандаш), так и недоступные (звезды, небо, метеориты), предметы художественного творчества и умственной деятельности (сочинение, стихотворение, решение задачи, картина, музыка и другие). Причем каждый объект человеком воспринимается только как единое целое.

Объект. Виды. Характеристики

Исходя из вышесказанного, можно сделать вывод, что объект является частью внешнего мира, которая может быть воспринята в качестве единого целого. Каждый предмет восприятия имеет свои индивидуальные характеристики, отличающие его от других (форма, сфера использования, цвет, запах, размер и так далее). Важнейшей характеристикой объекта является название, но для полного качественного его описания одного названия недостаточно. Чем более полно и подробно описан объект, тем легче процесс его распознавания.

Модели. Определение. Классификация

В своей деятельности (образовательной, научной, художественной, технологической) человек ежедневно использует уже существующие и создает новые модели внешнего мира. Они позволяют сформировать впечатление о процессах и объектах, недоступных для непосредственного восприятия (очень маленькие или, наоборот, очень большие, очень медленные или очень быстрые, очень далекие и так далее).

Итак, модель - это некоторый объект, отражающий важнейшие особенности изучаемого явления, объекта либо процесса. Может существовать несколько вариаций моделей одного и того же объекта, также как несколько объектов могут быть описаны одной единственной моделью. Например, подобная ситуация возникает в механике, когда различные тела с материальной оболочкой могут быть выражены то есть одинаковой моделью (человек, автомобиль, поезд, самолет).

Важно помнить, что ни одна модель не способна полноценно заменить изображаемый объект, так как она отображает только некоторые из его свойств. Но порой при решении определенных задач различных научных и промышленных течений описание внешнего вида модели может быть не просто полезным, но единственной возможностью представить и изучить особенности характеристик объекта.

Сфера применения предметов моделирования

Модели играют важную роль в различных сферах жизни человека: в науке, образовании, торговле, проектировании и других. Например, без их применения невозможны проектирование и сборка технических устройств, механизмов, электрических цепей, машин, зданий и так далее, так как без предварительных расчетов и создания чертежа выпуск даже простейшей детали невозможен.

Часто используются модели в образовательных целях. Они носят названия наглядных. Например, из географии представление о Земле как о планете человек получает, изучая глобус. Также актуальными наглядные модели являются и в других науках (химии, физике, математике, биологии и других).

В свою очередь, теоретические модели востребованы при изучении естественных и (биологии, химии, физики, геометрии). Они отражают свойства, поведение и строение объектов, подвергающихся изучению.

Моделирование как процесс

Моделирование - метод познавания, включающий в себя исследование существующих и создание новых моделей. Предметом познания данной науки является модель. ранжируются в зависимости от различных свойств. Как известно, любой объект имеет множество характеристик. При создании определенной модели выделяются лишь наиболее важные для решения поставленной задачи.

Процессом создания моделей является художественное творчество во всем своем разнообразии. В связи с этим фактически каждое художественное или литературное произведение можно рассматривать в качестве модели реального объекта. Например, картины являются моделями реальных пейзажей, натюрмортов, людей, литературные произведения - моделями человеческих жизней и так далее. Например, при создании модели самолета с целью изучения его важно отразить в ней геометрические свойства оригинала, но абсолютно неважен его цвет.

Одни и те же объекты различными науками изучаются с разных точек зрения, а соответственно, их виды моделей для изучения будут также отличаться. Например, физика изучает процессы и результаты взаимодействия объектов, химия - химический состав, биология - поведение и строение организмов.

Модель относительно временного фактора

Относительно времени модели делятся на два вида: статические и динамические. Примером первого вида является единоразовое обследование человека в клинике. Оно отображает картину его состояния здоровья на данный момент, в то время как его медицинская карта будет моделью динамической, отражающей изменения, происходящие в организме на протяжении определенного периода времени.

Модель. Виды моделей относительно формы

Как уже понятно, модели могут различаться по разным характеристикам. Так, все ныне известные виды моделей данных можно условно разделить на два основных класса: материальные (предметные) и информационные.

Первый вид передает физические, геометрические и иные свойства объектов в материальной форме (анатомический муляж, глобус, макет здания и так далее).

Виды разнятся по форме реализации: знаковая и образная. Образные модели (фотографии, рисунки и другое) являются зрительными реализациями объектов, зафиксированными на определенном носителе (фото-, кинопленке, бумажном или цифровом).

Они широко применяются в образовательном процессе (плакаты), при изучении различных наук (ботаника, биология, палеонтология и других). Знаковые модели - это реализации объектов в виде символов одной из известных языковых систем. Они могут быть представлены в виде формул, текста, таблиц, схем и так далее. Существуют случаи, когда, создавая знаковую модель (виды моделей передают конкретно то содержание, которое требуется для изучения определенных характеристик объекта), используют сразу несколько известных языков. Примером в данном случае выступают различные графики, диаграммы, карты и подобное, где используются как графические символы, так и символы одной из языковых систем.

С целью отражения сведений из различных сфер жизни применяются три основных вида информационных моделей: сетевые, иерархические и табличные. Из них наиболее популярным является последний, применяемый для фиксации различных состояний объектов и характерных для них данных.

Табличная реализация модели

Данный вид информационной модели, как уже было сказано выше, является наиболее известным. Выглядит он следующим образом: это обычная, состоящая из строк и столбцов таблица прямоугольной формы, графы которой заполнены символами одного из известных знаковых языков мира. Применяются табличные модели с целью характеристики объектов, обладающих одинаковыми свойствами.

С их помощью в различных научных сферах могут быть созданы как динамические, так и статические модели. Например, таблицы, содержащие математические функции, различные статистические данные, расписания поездов и так далее.

Математическая модель. Виды моделей

Отдельной разновидностью информационных моделей являются математические. Все виды обычно состоят из уравнений, написанных на языке алгебры. Решение данных задач, как правило, основывается на процессе поиска равнозначных преобразований, которые способствуют выражению переменной величины в виде формулы. Существуют также для некоторых уравнений и точные решения (квадратные, линейные, тригонометрические и так далее). Как следствие, для их решения приходится применять методы решения с приближенной заданной точностью, иначе говоря, такие виды математических данных, как числовой (метод половинного деления), графический (построение графиков) и другие. Метод половинного деления целесообразно использовать лишь при условии, что известен отрезок, где функция при определенных значениях принимает полярные значения.

А метод построения графика является унифицированным. Его можно использовать как в вышеописанном случае, так и в ситуации, когда решение может быть только приближенным, а не точным, в случае так называемого "грубого" решения уравнений.

Понравилась статья? Поделиться с друзьями: