Условия возникновения индукционного тока в катушке. Школьная энциклопедия

Подробности Категория: Электричество и магнетизм Опубликовано 24.05.2015 20:43 Просмотров: 6300

Электрические и магнитные явления тесно связаны. И если ток порождает магнетизм, то должно существовать и обратное явление - появление электрического тока при движении магнита. Так рассуждал английский учёный Майкл Фарадей , в 1822 г. сделавший в своём лабораторном дневнике следующую запись: «Превратить магнетизм в электричество».

Этому событию предшествовало открытие явления электромагнетизма датским физиком Хансом Кристианом Эрстедом, обнаружившим возникновение магнитного поля вокруг проводника с током. Много лет Фарадей проводил различные эксперименты, но первые опыты не принесли ему удачи. Основная причина была в том, что учёный не знал, что лишь переменное магнитное поле способно создать электрический ток. Реальный результат удалось получить лишь в 1831 г.

Опыты Фарадея

Нажать на картинку

В опыте, проделанном 29 августа 1931 г., учёный обмотал витками проводов противоположные стороны жел езного кольца. Один провод он соединил с гальванометром. В момент подключения второго провода к батарее стрелка гальванометра резко отклонялась и возвращалась в исходное положение. Такая же картина наблюдалась и при размыкании контакта с батареей. Это означало, что в цепи появлялся электрический ток. Он возникал в результате того, что силовые линии магнитного поля, созданного витками первого провода, пересекали витки второго провода и генерировали в них ток.

Опыт Фарадея

Через несколько недель был проведен опыт с постоянным магнитом. Фарадей подключил гальванометр к катушке из медной проволоки. Затем резким движением втолкнул внутрь магнитный стержень цилиндрической формы. В этот момент стрелка гальванометра также резко качнулась. Когда стержень извлекался из катушки, стрелка качнулась также, но в противоположную сторону. И так происходило каждый раз, когда магнит вталкивался или выталкивался из катушки. То есть ток появлялся в контуре при движении магнита в нём. Так Фарадею удалось «превратить магнетизм в электричество».

Фарадей в лаборатории

Ток в катушке появляется также, если вместо постоянного магнита внутри неё перемещать другую катушку, подключенную к источнику тока.

Во всех этих случаях происходило изменение магнитного потока, пронизывающего контур катушки, что приводило к появлению электрического тока в замкнутом контуре. Это явление навали электромагнитной индукцией , а ток – индукционным током .

Известно, что ток в замкнутом контуре существует, если в нём поддерживает разность потенциалов с помощью электродвижущей силы (ЭДС). Следовательно, при изменении магнитного потока в контуре такая ЭДС в нём и возникает. Она называется ЭДС индукции .

Закон Фарадея

Майкл Фарадей

Величина электромагнитной индукции не зависит от того, по какой причине меняется магнитный поток – изменяется ли само магнитное поле или контур движется в нём. Она зависит от скорости изменения магнитного потока, пронизывающего контур.

где ε – ЭДС, действующая вдоль контура;

Ф В – магнитный поток.

На величину ЭДС катушки в переменном магнитном поле влияет число витков в ней и величина магнитного потока. Закон Фарадея в этом случае выглядит так:

где N число витков;

Ф В – магнитный поток через один виток;

Ψ – потокосцепление, или суммарный магнитный поток, сцепляющийся со всеми витками катушки.

Ψ = N ·Ф i

Ф i – поток, проходящий через один виток.

Даже слабый магнит может создать большой ток индукции, если скорость движения этого магнита высока.

Так как индукционный ток возникает в проводниках при изменении магнитного потока, пронизывающего их, то в проводнике, который движется в неподвижном магнитном поле, он появится тоже. Направление тока индукции в этом случае зависит от направления движения проводника и определяется по правилу правой руки: «Если расположить ладонь правой руки таким образом, чтобы в неё входили силовые линии магнитного поля, а отогнутый на 90 0 большой палец показывал бы направление движения проводника, то вытянутые 4 пальца укажут направление индуцированной ЭДС и направление тока в проводнике ».

Правило Ленца

Эмилий Христианович Ленц

Направление тока индукции определяется по правилу, которое действует во всех случаях, когда такой ток возникает. Это правило сформулировал российский физик балтийского происхождения Эмилий Христианович Ленц: «Индукционный ток, возникающий в замкнутом контуре, имеет такое направление, что создаваемый им магнитный поток противодействует изменению того магнитного потока, который этот ток вызвал.

Нужно заметить, что такой вывод был сделан учёным на основании результатов опытов. Ленц создал прибор, состоящий из свободно вращающейся алюминиевой пластинки, на одном конце которой было закреплено сплошное кольцо из алюминия, а на другом – кольцо с надрезом.

Если магнит приближали к сплошному кольцу, оно отталкивалось и начинало «убегать».

Нажать на картинку

При отдалении магнита кольцо стремилось догнать его.

Нажать на картинку

Ничего подобного не наблюдалось с разрезанным кольцом.

Ленц объяснил это тем, что в первом случае индукционный ток создаёт магнитное поле, линии индукции которого направлены противоположно линиям индукции внешнего магнитного поля. Во втором случае линии индукции магнитного поля, созданного индукционным током, совпадают по направлению с линиями индукции поля постоянного магнита. В разрезанном кольце ток индукции не возникает, поэтому оно не может взаимодействовать с магнитом.

Согласно правилу Ленца при увеличении внешнего магнитного потока индукционный ток будет иметь такое направление, что созданное им магнитное поле будет препятствовать такому увеличению. Если же внешний магнитный поток уменьшается, то магнитное поле индукционного тока будет поддерживать его и не давать ему уменьшаться.

Генератор электрического тока

Генератор переменного тока

О ткрытие Фарадеем электромагнитной индукции позволило использовать это явление на практике.

Что произойдёт, если вращать катушку с большим количеством витков из металлической проволоки в неподвижном магнитном поле? Магнитный поток, пронизывающий контур катушки, будет постоянно меняться. И в ней возникнет ЭДС электромагнитной индукции. Значит, такая конструкция может вырабатывать электрический ток. На этом принципе основана работа генераторов переменного тока .

Генератор состоит из 2 частей – ротора и статора. Ротор - это подвижная часть. В генераторах малой мощности чаще всего вращается постоянный магнит. В мощных генераторах вместо постоянного магнита используют электромагнит. Вращаясь, ротор создаёт изменяющийся магнитный поток, который и генерирует электрический ток индукции в витках обмотки, расположенной в пазах неподвижной части генератора – статоре. Ротор приводят во вращение двигателем. Это может быть паровая машина, водяная турбина и др.

Трансформатор

Это, пожалуй, самые распространённое устройство в электротехнике, предназначенное для преобразования электрического тока и напряжения. Трансформаторы используются в радиотехнике и электронике. Без них невозможна передача электроэнергии на большие расстояния.

Простейший трансформатор состоит из двух катушек, имеющих общий металлический сердечник. Переменный ток, подаваемый на одну из катушек, создаёт в ней переменное магнитное поле, которое усиливается сердечником. Магнитный поток этого поля, пронизывая витки второй катушки, создаёт в ней индукционный электрический ток. Так как величина ЭДС индукции зависит от числа витков, то меняя их соотношение в катушках, можно менять и величину тока. Это очень важно, например, при передаче электроэнергии на большие расстояния. Ведь при транспортировке происходят большие потери, из-за того, что провода нагреваются. Уменьшив с помощью трансформатора ток, эти потери снижают. Но при этом напряжение увеличивается. На конечном этапе с помощью понижающего трансформатора снижают напряжение и увеличивают ток. Конечно, такие трансформаторы устроены гораздо сложнее.

Нельзя не сказать о том, что не только Фарадей пытался создать индукционный ток. Подобные эксперименты проводил также известный американский физик Джозеф Генри. И ему удалось добиться успеха практически одновременно с Фарадеем. Но Фарадей опередил его, опубликовав сообщение о сделанном им открытии раньше Генри.

Индукционный ток это такой ток, который возникает в замкнутом проводящем контуре, находящемся в переменном магнитном поле. Этот ток может возникать в двух случаях. Если имеется неподвижный контур, пронизываемый изменяющимся потоком магнитной индукции. Либо когда в неизменном магнитном поле движется проводящий контур, что также вызывает изменение магнитного потока пронизывающего контур.

Рисунок 1 — Проводник перемещается в неизменном магнитном поле

Причиной возникновения индукционного тока является вихревое электрическое поле, которое порождается магнитным полем. Это электрическое поле действует на свободные заряды, находящиеся в проводнике, помещенном в это вихревое электрическое поле.

Рисунок 2 — вихревое электрическое поле

Также можно встретить и такое определение. Индукционный ток это электрический ток, который возникает вследствие действия электромагнитной индукции. Если не углубляется в тонкости закона электромагнитной индукции, то в двух словах ее можно описать так. Электромагнитная индукция это явление возникновение тока в проводящем контуре под действие переменного магнитного поля.

С помощью этого закона можно определить и величину индукционного тока. Так как он нам дает значение ЭДС, которая возникает в контуре под действие переменного магнитного поля.

Формула 1 — ЭДС индукции магнитного поля .

Как видно из формулы 1 величина ЭДС индукции, а значит и индукционного тока зависит от скорости изменения магнитного потока пронизывающего контур. То есть чем быстрее будет меняться магнитный поток, тем больший индукционный ток можно получить. В случае, когда мы имеем постоянное магнитное поле, в котором движется проводящий контур, то величина ЭДС будет зависеть от скорости движения контура.

Чтобы определить направление индукционного тока используют правило Ленца. Которое гласит что, индукционный ток направлен навстречу тому току, который его вызвал. Отсюда и знак минус в формуле для определения ЭДС индукции.

Индукционный ток играет важную роль в современной электротехнике. Например, индукционный ток, возникающий в роторе асинхронного двигателя, взаимодействует с током, подводимым от источника питания в его статоре, вследствие чего ротор вращается. На этом принципе построены современные электродвигатели.

Рисунок 3 — асинхронный двигатель.

В трансформаторе же индукционный ток, возникающий во вторичной обмотке, используется для питания различных электротехнических приборов. Величина этого тока может быть задана параметрами трансформатора.

Рисунок 4 — электрический трансформатор.

И наконец, индукционные токи могут возникать и в массивных проводниках. Это так называемые токи Фуко. Благодаря им можно производить индукционную плавку металлов. То есть вихревые токи, текущие в проводнике вызывают его разогрев. В зависимости от величины этих токов проводник может разогреваться выше точки плавления.

Рисунок 5 — индукционная плавка металлов.

Итак, мы выяснили, что индукционный ток может оказывать механическое, электрическое и тепловое действие. Все эти эффекты повсеместно используются в современном мире, как в промышленных масштабах, так и на бытовом уровне.

ИНДУКЦИОННЫЙ ТОК — это электрический ток, возникающий при изменении потока магнитной индукции в замкнутом проводящем контуре. Это явление носит название электромагнитной индукции. Хотите узнать какое направление индукционного тока? Росиндуктор — это торговый информационный портал, где вы найдете информацию про ток.

Определяющее направление индукционного тока правило звучит следующим образом: «Индукционный ток направлен так, чтобы своим магнитным полем противодействовать изменению магнитного потока, которым он вызван». Правая рука развернута ладонью навстречу магнит¬ным силовым линиям, при этом большой палец направлен в сторону движения проводника, а четыре пальца по-казывают, в каком направлении будет течь индукционный ток. Перемещая проводник, мы перемещаем вместе с проводчиком все электроны, заключенные в нем, а при перемещении в магнитном поле электрических зарядов на них будет действовать сила по правилу левой руки.

Направление индукционного тока, как и его величина, определяется правилом Ленца, в котором говорится, что направление индукционного тока всегда ослабляет действие фактора, возбудившего ток. При изменении потока магнитного поля через контур направление индукционного тока будет таким, чтобы скомпенсировать эти изменения. Когда магнитное поле возбуждающее ток в контуре создается в другом контуре, направление индукционного тока зависит от характера изменений: при увеличении внешнего тока индукционный ток имеет противоположное направление, при уменьшении — направлен в ту же сторону и стремиться усилить поток.

Катушка с индукционным током имеет два полюса (северный и южный), которые определяются в зависимости от направления тока: индукционные линии выходят из северного полюса. Приближение магнита к катушке вызывает появление тока с направлением, отталкивающим магнит. При удалении магнита ток в катушке имеет направление, способствующее притягиванию магнита.


Индукционный ток возникает в замкнутом контуре, находящемся в переменном магнитном поле. Контур может быть как неподвижным (помещенным в изменяющийся поток магнитной индукции), так и движущимся (движение контура вызывает изменение магнитного потока). Возникновение индукционного тока обуславливает вихревое электрическое поле, которое возбуждается под воздействием магнитного поля.

О том, как создать кратковременный индукционный ток можно узнать из школьного курса физики.

Для этого есть несколько способов:

  • - перемещение постоянного магнита или электромагнита относительно катушки,
  • - перемещение сердечника относительно вставленного в катушку электромагнита,
  • - замыкание и размыкание цепи,
  • - регулирование тока в цепи.


Основной закон электродинамики (закон Фарадея) гласит, что сила индукционного тока для любого контура равна скорости изменения магнитного потока, проходящего через контур, взятой со знаком минус. Сила индукционного тока носит название электродвижущей силы.


Большую часть электроэнергии в виде переменного индукционного тока на планете Земля человечество производит с помощью индукционных электрогенераторов. Постоянный ток, также получаемый от электрогенераторов, является частным случаем переменного тока. Существует множество различных конструкций электрогенераторов, но в основе их работы лежит один и тот же принцип. Это принцип относительного движения (вращения) якоря в магнитном поле индуктора, или наоборот, вращения магнитного поля индуктора относительно якоря.

Большой научный и практический вклад в развитие науки об электричестве и создании оборудования для его производства внес известный сербский ученый Никола Тесла. Его изобретения и открытия как физика, инженера, конструктора, явились прочным фундаментом для развития электротехники и радиофизики. Многие его идеи в этих областях науки и техники востребованы и в настоящее время.

На организацию и поддержание работы электрогенератора, для преодоления сил сопротивления вращению якоря в магнитном поле индуктора, затрачиваются значительные механические силы. В основном, эти силы реализуются в виде различных приводов, таких как паровые, газовые турбины, гидротурбины, ДВС и др. Электромагнитная индукция непосредственно (напрямую) связана с производством электроэнергии.

Рассмотрим простейшую лабораторную схему устройства электрогенератора, представленную на Рис.1. По этой схеме, но более сложной конструкции, устроено большинство промышленных электрогенераторов.

В магнитном поле постоянного магнита между полюсами N и S вращается проводящая рамка 2 из проволоки, концы которой припаяны к проводящим кольцам 1. Эти кольца соединены с контактами 3 и далее с проводами внешней цепи, включающей гальванометр. Рамка вращается в магнитном поле магнита, магнитный поток которого все время изменяется. В результате воздействия магнитного потока Ф на микроструктуру проводников рамки в замкнутой цепи возникает индукционный ток, который фиксируется гальванометром. Практически во всех учебниках по физике величину Ф через виток-рамку определяют, как произведение напряженности магнитного поля (H) на площадь витка (S) и на синус угла (a) между направлением магнитного поля и плоскостью рамки.

Заменив угол а через (wхt), где w- угловая скорость вращения витка-рамки, а t- время, получим формулу

в которой график изменения величины Ф через рамку представляет собой синусоиду (Рис.2).

Приведенная формула кроме математического описания изменения величины Ф через площадь витка, ничего не дает в плане понимания физического смысла процесса. В этой формуле вместо площади витка S следовало бы указать длину проводников рамки, так как магнитное поле в процессе вращения рамки взаимодействует с микроструктурой ее проводов.

Аналогичные графики изменения величины тока и напряжения во времени, регистрируемые осциллографом, также представляют собой синусоиду (Рис.3). Эта известная информация понадобилась нам только для того, чтобы напомнить о том, что воздействие внешнего магнитного поля магнита на вращающийся в нем виток-рамку есть не что иное как синусоидальное, импульсное взаимодействие магнитного поля с микроструктурой проводов витка-рамки.

Как уже упоминалось ранее, конструкция электрогенератора представляет собой колебательный контур. Магнитное поле индуктора-магнита (Рис.1), которое является внешним магнитным полем по отношению к якорю-рамке, воздействует на микроструктуру проводников рамки изменяющимся по закону изменения синуса магнитным потоком, индуцируя в микроструктуре проводников якоря его собственное магнитное поле. Почти одновременно с началом вращения рамки по всей остальной замкнутой электрической цепи проходит сигнал-импульс от внешнего магнитного поля и во всем объеме цепи микро источники повторяют этот импульс по образу и подобию, создавая собственное магнитное поле по всей цепи. Еще один импульс — и снова воспроизводство (повторение). И так бесконечное число раз пока работает электрогенератор.

Рассмотрим более подробно этот процесс. Начнем с неудобного детского вопроса: «Почему индукционный ток возникает в замкнутой рамке (применительно к рис.1), которая вращается в магнитном поле постоянного магнита, и не возникает в неподвижной рамке, находящейся в том же магнитном поле магнита, в каком бы положении не находилась рамка?» Как утверждает квантовая физика электроны-электрические заряды обращаются вокруг ядра атома с большой скоростью. При этом электроны обладают двумя магнитными моментами: орбитальным и спиновым и по тем же квантовым законам должны взаимодействовать с магнитным полем, (должны тормозиться в магнитном поле неподвижного магнита), излучая микроэнергию по аналогии с северным сиянием. Но не тут-то было. Никакого излучения не происходит, хотя магнитные силовые линии (МСЛ) магнита пронизывают микроструктуру проводников на атомарном уровне. Чем же так привлекает микро источники-электроны в микроструктуре проводников движущееся магнитное поле? Чтобы ответить на этот вопрос вспомним опыты русского ученого П.Н. Лебедева по изучению давления света на легкие предметы в вакууме. На то, что давление света существует, указывал еще Коперник, наблюдая за хвостовой частью комет, пролетающих вблизи Солнца.

Изучение возникновения электрического тока всегда волновало ученых. После того, как в начале XIX века датский ученый Эрстед выяснил, что вокруг электрического тока возникает магнитное поле, ученые задались вопросом: может ли магнитное поле порождать электрический ток и наоборот.Первым ученым, кому это удалось, был ученый Майкл Фарадей.

Опыты Фарадея

После многочисленных проведенных опытов Фарадей смог достичь кое-каких результатов.

1.Возникновение электрического тока

Для проведения опыта он взял катушку с большим количеством витков и присоединил ее к миллиамперметру (прибору, измеряющему силу тока). По направлению вверх и вниз ученый передвигал магнит по катушке.

Во время проведения эксперимента, в катушке действительно появлялся электрический ток по причине изменения магнитного поля вокруг нее.

По наблюдениям Фарадея стрелка миллиамперметра отклонялась и указывала на то, что движение магнита порождает собой электрический ток. При остановке магнита стрелка показывала нулевую разметку, т.е. ток не циркулировал по цепи.


рис. 1 Изменение силы тока в катушке за счет передвижения реjcтата

Данное явление, при котором ток возникает под действием переменного магнитного поля в проводнике, назвали явлением электромагнитной индукции.

2.Изменение направления индукционного тока

В своих последующих исследованиях Майкл Фарадей пытался выяснить, что влияет на направление возникающего индукционного электрического тока. Проводя опыты, он заметил, что изменяя числа мотков на катушке или полярность магнитов, направление электрического тока, которое возникает в замкнутой сети меняется.

3.Явление электромагнитной индукции

Для проведения опыта ученый взял две катушки, которые расположил близко друг к другу. Первая катушка, имеющая большое количество витков проволоки, была подсоединена к источнику тока и ключу, замыкающему и размыкающему цепь. Вторую такую же катушку он присоединил к миллиамперметру уже без подключения к источнику тока.

Проводя эксперимент, Фарадей заметил, что при замыкании электрической цепи возникает индуцированный ток, что видно по движению стрелки миллиамперметра. При размыкании цепи миллиамперметр также показывал, что в цепи есть электрический ток, но показания были прямо противоположными. Когда же цепь была замкнута и равномерно циркулировала ток, тока в электрической цепи согласно данным миллиамперметра не было.

https://youtu.be/iVYEeX5mTJ8

Вывод из экспериментов

В результате открытия Фарадея была доказана следующая гипотеза: электрический ток появляется только при изменении магнитного поля. Также было доказано, что изменение числа витков в катушке изменяет значение силы тока (увеличение мотков увеличивает силу тока). Причем индуцированный электрический ток может появиться в замкнутой цепи только при наличии переменного магнитного поля.

От чего зависит индукционный электрический ток?

Основываясь на всем вышесказанном, можно отметить, что даже если есть магнитное поле, это не приведет к возникновению электрического тока, если данное поле не будет при этом переменным.

Так от чего же зависит величина индукционного поля?

  1. Число витков на катушке;
  2. Скорость изменения магнитного поля;
  3. Скорость движения магнита.

Магнитный поток является величиной, которая характеризует магнитное поле. Изменяясь, магнитный поток приводит к изменению индуцированного электрического тока.


рис.2 Изменение силы тока при перемещении а) катушки, в котором находится соленоид; б) постоянного магнита, внесением его в катушку

Закон Фарадея

Основываясь на проведенных опытах, Майкл Фарадей сформулировал закон электромагнитной индукции. Закон заключается в том, что, магнитное поле при своем изменении приводит к возникновению электрического тока, Ток же указывает на наличие электродвижущей силы электромагнитной индукции (ЭДС).

Скорость магнитного тока изменяясь влечет за собой изменение скорости тока и ЭДС.

Закон Фарадея: ЭДС электромагнитной индукции равна численно и противоположна по знаку скорости изменения магнитного потока, который проходит через поверхность, ограниченную контуром

Индуктивность контура. Самоиндукция.

Магнитное поле создается в том случае, когда ток протекает в замкнутом контуре. Сила тока при этом влияет на магнитный поток и индуцирует ЭДС.

Самоиндукция – явление, при котором ЭДС индукции возникает при изменении силы тока в контуре.

Самоиндукция изменяется в зависимости от особенностей формы контура, его размеров и среды, его содержащей.

При увеличении электрического тока, ток самоиндукции контура может замедлить его. При его уменьшении, ток самоиндукции, напротив, не дает ему так быстро убывать. Таким образом, контур начинает обладать своей электрической инертностью, замедляющей любое изменение тока.

Применение индуцированного ЭДС

Явление электромагнитной индукции имеет применение на практике в генераторах, трансформаторах и двигателях, работающих на электричестве.

При этом ток для этих целей получают следующими способами:

  1. Изменение тока в катушке;
  2. Движение магнитного поля через постоянные магниты и электромагниты;
  3. Вращение витков или катушек в постоянном магнитном поле.

Открытие электромагнитной индукции Майкла Фарадея внесло большой вклад в науку и в нашу обыденную жизнь. Это открытие послужило толчком для дальнейших открытий в области изучения электромагнитных полей и имеет широкое применение в современной жизни людей.

Понравилась статья? Поделиться с друзьями: