Пилотажное исследование - это что такое? С какой целью проводится пилотажное исследование? Как составить описание научного эксперимента


Теги: ,

Получить объективную информацию об отношении сотрудников к различным явлениям внутри компании и к руководству порою бывает очень не просто. Часто в этом помогает простой метод – анкетирование.

Особенности анкетирования

Анкетирование – это один из методов обратной связи с сотрудниками компании. Он представляет собой некий опрос при помощи специального бланка-анкеты.

Процедура «вопрос-ответ» строго регламентирована, что позволяет сосредоточиться исключительно на намеченном предмете исследования.

Среди основных достоинств анкетирования стоит назвать:

  • Минимум трудозатрат при его подготовке, проведении и обработке полученных данных
  • Минимум затрат при охвате большого количества респондентов за раз
  • Гарантированная анонимность и как следствие большая вероятность достоверности полученной информации
  • Возможность разъяснения респонденту непонятно сформулированного для него вопроса
  • Возможность проведения исследования и получения результатов в течение короткого периода времени

Виды анкетирования

Анкетирование делится на несколько видов:

  • Сплошное или выборочное
  • Именное или анонимное
  • Очное или заочное

При сплошном анкетировании опрашиваются все сотрудники компании. Оно оправдано в тех случаях, когда необходимо узнать мнение сотрудников по стратегическим вопросам. Например, об их лояльности к руководству или к организации в целом.

Выборочное анкетирование проводится для получения обратной связи по какому-либо вопросу. Например, об испытанных трудностях в период адаптации в компании. При этом опрашивается лишь определенная группа сотрудников, или конкретный отдел, или конкретное подразделение.

Во время именного анкетирования каждый работник вписывает в бланк анкеты свои личные данные, в частности, фамилию, имя и отчество. При этом он тщательно обдумывает ответы на поставленные вопросы. С одной стороны, это несомненный плюс данного вида анкетирования. С другой, существует большая доля вероятности получения недостоверных ответов. А это уже существенный минус.

Анонимное анкетирование дает больше открытых и правдивых высказываний, но и увеличивает число поспешных и необдуманных ответов.

Очное анкетирование проводится в присутствии представителя от его организатора в определенное время и в определенном месте.

При заочном анкетировании бланки раздаются заранее или рассылаются по почте. Заполнить их можно в любое время в течение отведенного срока.

Выбор цели анкетирования, респондентов и содержание анкетирования

Каждая анкета вначале должна содержать обращение к респонденту с объяснениями целей анкетирования и описанием того, как надо отвечать на вопросы, а в конце благодарность за сотрудничество и предоставленную информацию.

Перед проведением анкетирования необходимо ответить на три вопроса:

  • С какой целью опрашиваем?
  • Кого опрашиваем?
  • О чем спрашиваем?

Цель проведения анкетирования формулируется индивидуально в каждом конкретном случае. Это может быть:

  • Оценка сотрудниками какого-либо события в компании
  • Сбор мнений работников по конкретному вопросу или об определенной проблеме с целью дальнейшего корректирования действий руководства и пр.

В зависимости от поставленной цели отбираются респонденты (все сотрудники компании или часть, рабочие, служащие или руководство, новички или старожилы и т.д.).

Особое внимание необходимо уделить объему анкеты. По мнению специалистов вопросов должно быть не больше 15 и не меньше 5. В этом случае реально получить самую объективную картину о предмете исследования. А сотрудникам не придется надолго отвлекаться от своих основных обязанностей.

  • Открытыми — ответ формулируется респондентом самостоятельно
  • Закрытыми – ответ выбирается из числа предложенных
  • Прямыми. Например, «Знаете ли вы …?», «Считаете ли вы …?», «Ваше мнение о …?» и т.д.
  • Косвенными. Например, «Существует мнение, что … . А как думаете вы?»

Порядок проведения анкетирования

Порядок проведения анкетирования всегда одинаков. Это:

  1. Определение цели анкетирования
  2. Выбор вида анкетирования, группы респондентов
  3. Составление анкеты
  4. Оповещение выбранной группы сотрудников, их мотивация
  5. Раздача анкет, заполнение и сбор
  6. Анализ полученных данных
  7. Составление отчета для руководства
  8. Оповещение сотрудников о результатах анкетирования

Анкетирование – это нужно и важно!

Налаженная обратная связь с сотрудниками – это важная составляющая успеха деятельности любой компании. Ведь принять какое-либо управленческое решение, убедиться в его своевременности или правильности порою очень непросто без достоверной информации.

Вопросы.

1. С какой целью и как проводился опыт с двумя маятниками, изображенными на рисунке 64, а?

Цель опыта: Демонстрация явления резонанса. Ход опыта: 1) колебания маятника 1, через нить передаются маятнику 2, длина нити которого неизменна, вызывая его колебания; 2) при уменьшении длины нити маятника 1 частота его колебаний начнет приближаться к собственной частоте маятника 2; 3) при этом амплитуда вынужденных колебаний маятника 2 будет возрастать; 4) в момент, когда частота вынуждающей силы маятника 1 совпадет с частотой собственных колебаний маятника 2 (одинаковая длина нитей маятников) маятники будут колебаться в одинаковых фазах; 5) при дальнейшем уменьшении длины нити маятника 1 частота колебаний маятника 2 будет уменьшаться.

2. В чем заключается явление, называемое резонансом?

Явление резонанса заключается в том, что при совпадении частоты вынуждающей силы с собственной частотой системы амплитуда вынужденных колебаний достигает своего максимального значения.

3. Какой из маятников, изображенных на рисунке 64, б) колеблется в резонанс с маятником 3? По каким признакам вы это определили?

В резонанс колеблется маятник 1, т.к. его длина нити равна длине нити маятника 3.

4. К каким колебаниям - свободным или вынужденным - применимо понятие резонанса?

Понятие резонанса применимо к вынужденным колебаниям.

5. Приведите примеры, показывающие, что в одних случаях резонанс может быть полезным явлением, а в других - вредным.

Вредное проявление резонанса можно увидеть на примере разрушения мостов, высотных сооружений, затопления пароходов на волнах. Положительное явление резонанса проявляется например при настройке музыкальных инструментов с помощью камертона, в радиоэлектронике.

Упражнения.

1. Маятник 3 (см.рис. 64, б) совершает свободные колебания.
а) Какие колебания - свободные или вынужденные - будут совершать при этом маятники 1, 2 и 4?
б) Благодаря чему возникает вынуждающая сила, действующая на маятники 1, 2 и 4?
в) Каковы собственные частоты маятников 1, 2 и 4 по сравнению с частотой колебаний маятника 3?
г) Почему маятник 1 колеблется в резонанс с маятником 3, а маятники 2 и 4 - нет?

а) маятники 1, 2 и 4 будут совершать вынужденные колебания, т.к. они колеблются под действием шнура; б) вынуждающая сила возникает благодаря колебанию маятника; в) частота маятника 1 равна частоте маятника 3, частота маятника 2 больше частоты маятника 3, частота маятника 4 меньше частоты маятника 3; г) т.к их длины одинаковы, то их собственные частоты совпадают и они колеблются в резонансе.

2. Вода, которую мальчик несет в ведре, начинает сильно расплескиваться. Мальчик меняет темп ходьбы (или просто "сбивает ногу"), и расплескивание прекращается. Почему так происходит?

Вода начинает расплескиваться когда частота шагов мальчика совпадает с собственной частотой колебаний ведра с водой в руках мальчика. Если частоты не совпадают, то ведро перестает сильно раскачиваться.

3. Собственная частота качелей равна 0,5 Гц. Через какие промежутки времени нужно подталкивать их, чтобы раскачать как можно сильнее, действуя относительно небольшой силой?

Достучаться до небес [Научный взгляд на устройство Вселенной] Рэндалл Лиза

С КАКОЙ ЦЕЛЬЮ ПРОВОДЯТСЯ ИЗМЕРЕНИЯ?

Измерения не могут быть идеальными. В научных исследованиях - как и при принятии любого решения - нам приходится определять для себя приемлемый уровень неопределенности. Только в этом случае можно двигаться вперед. К примеру, если вы принимаете лекарство и надеетесь, что оно облегчит вам сильную головную боль, то вам, возможно, достаточно знать, что это лекарство помогает обычному человеку в 75% случаев. С другой стороны, если изменение стиля питания ненамного снизит ваши и без того невысокие шансы заболеть чем?нибудь сердечно–сосудистым (к примеру, с 5 до 4,9%), этого может оказаться недостаточно, чтобы убедить вас отказаться от любимых пирожных.

В политике точка принятия решения еще менее определенна. Как правило, общество смутно представляет, насколько хорошо нужно изучить вопрос, прежде чем менять законы или накладывать ограничения. Необходимые расчеты здесь осложнены множеством факторов. Как говорилось в предыдущей главе, из?за неоднозначности целей и методов провести сколько?нибудь достоверный анализ «затраты - прибыли» очень сложно, а иногда вообще невозможно.

Колумнист The New York Times Николас Кристоф, ратуя за осторожность в обращении с потенциально опасными химическими веществами типа бисфенол–А (ВРА) в пище или пищевой упаковке, писал: «Исследования ВРА уже несколько десятков лет бьют тревогу, а данные до сих пор сложны и неоднозначны. Такова жизнь: в реальном мире законодательные меры, как правило, приходится принимать на основании неоднозначных и спорных данных».

Ничто из сказанного не означает, что нам не следует, определяя политический курс, стремиться к количественной оценке затрат и выгод. Однако ясно, что нам нужно четко понимать, что означает каждая оценка, как сильно она может меняться в зависимости от начальных предположений или целей, а также что при расчетах было и что не было принято во внимание. Анализ «затраты - выгоды» может быть полезен, но может и дать ложное ощущение конкретности, надежности и безопасности, которое зачастую приводит к опрометчивым решениям.

К счастью для нас, физики, как правило, ставят перед собой вопросы попроще, чем те, что приходится решать публичным политикам. Имея дело с чистым знанием, которое в ближайшее время не предполагается использовать на практике, думаешь совершенно о другом. Измерения в мире элементарных частиц тоже намного проще, по крайней мере теоретически. Все электроны по природе своей одинаковы. Проводя измерения, приходится думать о статистической и системной погрешности, зато о неоднородности популяции можно спокойно забыть. Поведение одного электрона дает нам достоверную информацию о поведении всех электронов. Тем не менее представления о статистической и системной погрешности применимы и здесь.

Однако даже в «простых» физических системах необходимо заранее решить, какая точность нам необходима, ведь идеальных измерений не бывает. На практике вопрос сводится к тому, сколько раз экспериментатор должен повторить измерение и насколько прецизионный измерительный прибор при этом использовать. Решение за ним. Приемлемый уровень неопределенности определяется задаваемыми вопросами. Разные цели предполагают разные уровни прецизионности и точности.

К примеру, атомные часы измеряют время с точностью до одной десятитриллионной, но такое точное представление о времени мало кому нужно. Исключение - эксперименты по проверке теории гравитации Эйнштейна: в них лишней прецизионности и точности быть не может. До сих пор все тесты показывают, что эта теория работает, но измерения непрерывно совершенствуются. При более высокой точности могут проявиться невиданные до сих пор отклонения, представляющие новые физические эффекты, которые невозможно было заметить в ходе прежних, менее точных экспериментов. Если это произойдет, то замеченные отклонения позволят нам заглянуть в царство новых физических явлений. Если нет, придется сделать вывод о том, что теория Эйнштейна даже точнее, чем было установлено ранее. Мы будем знать, что ее можно уверенно применять в более широком диапазоне энергий и расстояний, к тому же с большей точностью.

Если же нам нужно «всего лишь» доставить человека на Луну, то мы, естественно, не обойдемся без знания физических законов, достаточного, чтобы не промахнуться, но привлекать общую теорию относительности не обязательно, и уж тем более не требуется принимать во внимание еще более мелкие потенциальные эффекты, представляющие возможные отклонения от нее.

Из книги Новейшая книга фактов. Том 3 [Физика, химия и техника. История и археология. Разное] автора Кондрашов Анатолий Павлович

Из книги Движение. Теплота автора Китайгородский Александр Исаакович

Из книги Достучаться до небес [Научный взгляд на устройство Вселенной] автора Рэндалл Лиза

Из книги Новый ум короля [О компьютерах, мышлении и законах физики] автора Пенроуз Роджер

Из книги автора

Из книги автора

Из книги автора

Из книги автора

Из книги автора

Из книги автора

Из книги автора

Из книги автора

Из книги автора

Измерения g на службе разведки Речь идет не о военной разведке. Там знание ускорения силы тяжести ни к чему. Речь идет о геологической разведке, цель которой – найти залежи полезных ископаемых под землей, не роя ям, не копая шахт.Существует несколько методов очень точного

Из книги автора

ИЗМЕРЕНИЯ И БАК Вероятностная природа квантовой механики не подразумевает, что мы, по сути, ничего не знаем. Более того, зачастую все обстоит как раз наоборот. Нам известно достаточно много. К примеру, магнитный момент электрона - это его неотъемлемая характеристика,

Из книги автора

ДОПОЛНИТЕЛЬНЫЕ ИЗМЕРЕНИЯ Ни суперсимметрия, ни техницвет не дают нам идеального решения проблемы иерархии. Суперсимметричные теории не предлагают нам экспериментально непротиворечивых механизмов нарушения суперсимметрии, а создать на основе техницветной силы

Для измерения потерь и тока холостого хода трансформатора проводят опыт холостого хода. Измерение потерь х.х. позволяет про­верить состояние магнитопровода. При его повреждении (нарушена изоляция между листами) потери х.х. увеличиваются. Резкое увеличе­ние тока х.х. и потерь х.х. являются показателем наличия замыкания между витками одной из обмоток, местного нагрева и повреждения обмоток.

Опыт х.х. проводится после испытания электрической прочности изо­ляции. Это делается с той целью, чтобы обнаружить возможные дефекты после данного испытания.

При опыте х.х к обмотке низкого напряжения НН при разомкну­той обмотке ВН подводят номинальное напряжение.

ВНИМАНИЕ ! На трансформаторе с выводов ВН необходимо снять концы кабеля. Для снятия характеристики х.х. не­обходимо собрать схему, показанную на рисунке 3.4.

Рисунок 3.4- Схема для снятия характеристики холостого хода: 1- индукционный регулятор; 2 -ком­плект приборов K-50 или К-505; 3 - испытуемый трансформатор.

Подавая на обмотку НН напряжение в пределах от 0,5 до 1,1 U н, снять замеры величин напряжения, тока и потерь для каждой фазы. U а измерять комплектом К-505, Измерительный комплект К-505 измеряет фаз­ное напряжение, фазный ток и мощность фазы,a U ав, U вс, U ас вольтметром РV. Данные измерений занести в таблицу 3.6.

Таблица 3.6 Опыт холостого хода

По данным измерений определяют расчетные величины U хх, Р хх, I xx

, (3.3)

где U ав, U вс, U са - линейные напряжения на низкой стороне трансформатора.

, (3.4)

где I a , I в, I с – фазные токи.

, (3.5)

где - номинальное значение тока той обмотки, к которой подводится напряжение.

Для трехфазного трансформатора

, (3.7)

где Р ст. - потери в стали;

R ф - фазное сопротивление обмотки постоянному току.

Мощность Р хх почти целиком расходуется на покрытие потерь в стали сердечника трансформатора Р ст , так как при х.х. потери в обмотках ничтожно малы по сравнению с потерями в стали, то можно принять Р ст » Р хх .

На основании измерений необходимо построить характеристики х.х. трансформатора I хх, P xx =f(U xx) . Для вновь вводимых в эксплуатацию трансформаторов значения Р хх не должны отличаться от заводских данных более, чем на 10% (Р хх = 340 Вт для трансформатора TM-63/10).

7 Опыт короткого замыкания.

Для измерения потерь и напряжения короткого замыкания проводят опыт короткого замыкания (к.з.). При опыте к.з. проверяют правильность соединения обмоток трансформатора и состояние контактных соединений.

Опыт к.з. проводится для трансформатора на номинальной ступеню регулирования напряжения по схеме, по­казанной на рисунке 3.5.

Плавно поднимая напряжение, устанавливают в обмотке НН пони­женный по сравнению с номинальным ток в пределах 20 % I н, т.е. I к =20 А.

ВНИМАНИЕ! Измерения производить как можно быстрее во избежание нагрева обмоток.

Таблица 3.7- Опыт короткого замыкания

По данным измерений определяют расчетные величины и приводят значения напряжения и потерь к действительному напряжению к.з. по формулам:

, (3.9)

где I A , I B , I C – фазные токи при опыте.

, (3.10)

где U AB , U BC , U AC - линейные напряжения на высокой стороне трансформатора, измеренные при опыте.

, (3.11)

где Р а, Р в, Р с - фазные мощности измеренные при опыте к.з.

, (3.12)

где U К % - напряжение короткого замыкания в процентах от номинального;

U Н - номинальное значение той обмотки, к которой подводится напряжение.

I Н - номинальное значение тока той обмотки, к которой подводится напряжение.

Мощность, подведенная к трансформатору в режиме короткого замыкания при номинальном напряжении:

, (3.13)

Согласно каталожных данных Р КН =1290 Вт для трансформатора TM-63/10. Потери короткого замыкания трансформаторов состоят из суммы потерь в обмотках åI 2 R, (R – активное сопротивление фазы обмотки трансформатора) и добавочных потерь Р доб. от про­хождения магнитных потоков рассеяния через стенки бака, металличе­ские детали крепления магнитопровода и проводники самих обмоток, а также потерь в магнитопроводе от намагничивания. Потерями от намагничивания пренебрегают ввиду их малой величины (менее со­тых долей процента). Тогда Р доб. = Р к - åI 2 R .

Полученные результаты расчетов следует привести к номинальной температуре обмотки 75° С (согласно ГОСТ II677-65) по форму­лам:

, (3.14)

где t изм - температура, при которой проводился опыт, 0 С;

Р н - номинальная мощность трансформатора (при соsj=1, Р н =соsj ×S=63 кВт).

, Вт; (3.15)

На основании измерений необходимо построить характеристики короткого замыкания. I k , P k =f(U k).

8 При измерении сопротивления обмоток трансформатора постоян­ному току могут выявиться следующие характерные дефекты:

а) недоброкачественная пайка и плохие контакты в обмотке и в присоединении вводов;

б) обрыв одного или нескольких параллельных проводников.

Измерение активного сопротивления обмоток в данном случае производится мостовым методом или методом амперметра и вольтметра. Измерение производится на всех ответвлениях и на всех фазах. Данные измерения следует занести в таблицу 3.8.

Таблица 3.8- Сопротивления обмоток трансформатора постоянному току

После проведения всех измерений составляется сводная таблица 3.9 результатов испытаний и дается заключение о техниче­ском состоянии трансформатора и пригодности его к эксплуатации.

Таблица 3.9- Сводная таблица результатов испытаний, приведенных к нормальным условиям (75° С)

Примечание:

Заключение:

Содержание отчета. В отчете привести цель работы, записать паспортные данные трансформатора, дать краткое описание контрольных испытаний трансформаторов, вычертить схемы для испытаний и измерений, представить таблицы с опытными и расчет­ными данными и дать их анализ, вычертить характеристики х.х., харак­теристики короткого замыкания, сделать заключение о пригодности трансформатора к эксплуатации.

Контрольные вопросы.

1 С какой целью проводится заземление обмоток трансформатора пе­ред началом измерения сопротивления изоляции?

2 Назовите основные характеристики изоляции трансформатора.

3 К каким последствиям приводит уменьшение сопротивления изоляции обмотки трансформатора?

4 Как изменяется коэффициент абсорбции в зависимости от степени увлажнения изоляции и чем это объясняется?

5 Как измерить сопротивление изоляции обмоток силовых двухобмо­точных трансформаторов?

6 С какой целью измеряется коэффициент трансформации трансформа­тора?

7 Какие методы проверки группы соединения обмоток трансформаторов исполь­зуются на практике? Почему метод двух вольтметров является наи­более распространенным?

8 При измерении коэффициента трансформации получены следующие дан­ные: К ав =25, К вс =25, К ас =30 .Определить неисправность в трансфор­маторе.

9 Как и с какой целью проводится испытание электрической прочности главной изоляции обмоток трансформатора?

10 С какой целью измеряют сопротивление обмоток трансформатора постоянному току и какими методами?

11 С какой целью проводится опыт холостого хода и почему он прово­дится после испытания электрической прочности изоляции?

12 С какой целью и как проводится опыт короткого замыкания?

13 Какие параметры трансформатора определяются из опытов холосто­го хода и короткого замыкания?


ЛАБОРАТОРНАЯ РАБОТА №4

ДЕФЕКТАЦИЯ АСИНХРОННЫХ ЭЛЕКТРОДВИГАТЕЛЕЙ

С КОРОТКОЗАМКНУТЫМ И ФАЗНЫМ РОТОРОМ

ПРИ РЕМОНТЕ

Цель работы: изучить основные неисправности асинхронных элек­тродвигателей и причины их возникновения, освоить методику обна­ружения неисправностей асинхронных электродвигателей.

Программа работы.

1 Провести внешний осмотр электродвигателя и записать паспорт­ные данные.

2 Провести дефектацию электродвигателя до разборки:

Измерить сопротивление обмоток постоянному току;

Измерить сопротивление изоляции обмоток статора относительно корпуса и относительно друг друга;

Проверить вращение ротора и отсутствие видимых повреждений, препятствующих дальнейшему проведению испытаний и проверок.

3 Разобрать электродвигатель.

4 Провести дефектацию электродвигателя в разобранном виде:

Проверить состояние механических деталей и узлов электродвигателя;

Измерить величину воздушного зазора между статором и ротором;

Проверить отсутствие короткозамкнутых витков (витковое замы­кание), обрыв в обмотке;

Определить места повреждения обмоток статора;

Определить, записать обмоточные данные и вычертить схему об­мотки;

Проверить состояние активной стали статора;

Проверить беличью клетку ротора на отсутствие обрывов в стержнях и кольцах.

Если имеется электродвигатель с фазным ротором, то дефектацию обмотки ротора проводят аналогично дефектации обмотки статора. Дополни­тельно проводят испытание прочности изоляции контактных колец и проверяют состояние активной стали ротора;

Все обнаруженные неисправности механических деталей, обмоток ротора и статора, данные электродвигателя занести в дефектовочную ведомость или технологическую карту ремонта.

1 Асинхронные электродвигатели, поступившие в ремонт, тщатель­но осматривают, а при необходимости испытывают и разбирают с це­лью полного выявления причин, характера и масштабов повреждения. Осмотр электродвигателя, ознакомление с объемом и характером пре­дыдущих ремонтов и эксплуатационными журналами, а также проведе­ние испытаний позволяют оценить состояние всех сборочных единиц и деталей электродвигателя и определить объемы и сроки ремонта, составить техническую документацию по ремонту.

Электродвигатели повреждаются чаще всего из-за недопустимо длительной работы без ремонта, плохого эксплуатационного обслужи­вания или нарушения режима работы, на который они рассчитаны.

Повреждения бывают механические и электриче­ские.

К механическим повреждениям относят: выплавку баббита в под­шипниках скольжения, разрушение сепаратора, кольца, шарика или ролика в подшипниках качения; деформацию или поломку вала ротора; ослабление крепления сердечника статора к станине, разрыв или сползание проволочных бандажей роторов; ослабление прессовки сер­дечника ротора и другие.

Электрическими повреждениями являются: обрыв проводников в обмотке, замыкание между витками обмотки, нарушение контактов и разрушение соединений, выполненных пайкой или сваркой, пробой изоляции на кор­пус, недопустимое снижение сопротивления изоляции вслед­ствие ее старения, разрушения или увлажнения и др.

Краткий перечень наиболее распространенных неисправностей и возможных причин их возникновения в асинхронных машинах приведен в таблице 4.1.

Неисправности и повреждения электрических двигателей не всегда удается обнаружить путем внешнего осмотра, так как некоторые из них (витковые замыкания в обмотках статоров, пробой изоляции на корпус, нарушение пайки в обмотках и др.) носят скрытый характер и могут быть определены только после соответствующих испытаний и измерений.

Таблица 4.1- Неисправности асинхронных машин и возможные причины их возникновения

2 Дефектация электродвигателя до разборки.

В число предремонтных операций по выявлению неисправностей электрических двигателей входят: измерение сопротивления изоляции обмоток, проверка целостности обмоток, испытание элек­трической прочности изоляции, проверка на холостом ходу подшипников, величины осевого разбега ротора, определение состояния крепежных деталей, отсутствие повреждений (трещин, сколов) у отдельных деталей электродвигателя:

а) измерение сопротивления обмоток постоянному току произво­дится с целью проверки отсутствия разрывов в обмотке, например из-за нарушения целостности мест соединений в результате некаче­ственной пайки. Измерение сопротивления производится с помощью моста постоянного тока УМВ, Р353 и другими с классом точности не ниже 0,5. Измеренные сопротивления обмоток не должны отличаться друг от друга более, чем на 2%;

б ) измерение сопротивления изоляции обмоток электродвигателя осуществляется согласно методики, изложенной в общих указаниях (стр. 8-9).

в) ротор электродвигателя поворачивают для проверки его сво­бодного вращения и наличия выбега. Для малых машин эту операцию осуществляют вручную. Такая проверка обязательна перед первым пуском машины или после длительной ее стоянки в условиях, когда в машину могли попасть посторонние предметы

3 Разборку электродвигателя производят с помощью слесарных инструментов.

4. Дефектацию электродвигателя в разобранном виде осуществляют в следующем порядке:

4.1 Определяют состояние механических деталей и отдельных узлов внешним осмотром.

4.2 Проверяют величину воздушного зазора набором щупов не ме­нее чем в четырех точках, поворачивая ротор по часовой стрелке на угол 90°. Среднеарифметическое значение результатов измерений сравнивают с допустимыми значениями (таблица 4.2). Отклонение не должно превышать ±10%.

Таблица 4.2- Нормальные значения воздушных зазоров

асинхронных двигателей

4.3 Определяют повреждения изоляции в электродвигателе, которые приводят к коротким замыканиям.

В зависимости от вида повреждений изоляции возможны следующие замыкания:

Между витками одной катушки в пазу или лобовых частях (витковое замыкание) при повреждении межвитковой изоляции;

Между катушками или катушечными группами одной фазы при повреждении межсекционной изоляции;

Между катушками разных фаз при повреждении межфазовой изоляции;

Замыкание на корпус при повреждении пазовой изоляции.

Пропуская переменный ток пониженного напряжения через отдель­ные фазы обмотки, можно определить место виткового замыкания. Короткозамкнутые витки при включении фазы под напряжение являются как бы вторичной обмоткой автотрансформатора, замкнутой накоротко. Через короткозамкнутые витки протекают токи большой величины, кото­рые нагревают лобовую часть обмотки. По местному нагреву опреде­ляется место виткового замыкания.

Замкнутый виток легко определяется с помощью подковообразного электромагнита.

Рисунок 4.1- Нахождение замкнутого витка с помощью электро­магнита и стальной пластинки, где обозначено: а) замыкания витков нет; б) замыкание витков есть; 1 - проводник обмотки; 2 –электромагнит; 3 - стальная пластина; Ф - магнитный поток магнита; Ф пр - магнитный поток короткозамкнутого проводника с током.

Для нахождения короткозамкнутых витков в секциях обмоток элект­ромагнит устанавливается параллельно пазам статора. После вклю­чения обмотки электромагнита в электрическую сеть переменного то­ка (220 В при частоте 50 Гц) по обмотке потечет ток, который создаст магнитный поток Ф, замыкающийся через сердечник электромаг­нита и часть магнитопровода статора электродвигателя. Этот переменный магнитный поток будет индуктировать ЭДС в проводниках, охватываемых контуром.

При отсутствии витковых замыканий (рисунок 4.1-а) в обмотке ЭДС не вызывает появления тока (для него нет замкнутой цепи). При наличии короткозамкнутых витков ЭДС вызовет в них появление тока, причем значительной величины из-за малого сопротивления контура. Ток создаст магнитный поток Ф пр вокруг короткозамкнутых витков (рисунок 4.1-б). Последние легко обнаруживаются стальной пластиной, которая притягивается к зубцам статора над данным пазом. На производстве для определения витковых замыканий широко используют также прибор типа ЕЛ-1.

Замыкание на корпус (если мегаомметр показывает ноль) может быть определено с помощью милливольтметра. Этот метод связан с поочередной распайкой обмотки на отдельные катушки и проверкой каждой из них. Напряжение на оба конца поврежденной фазы подается с одного зажима аккумулятора напряжением до 2,5 В, а второй зажим соединяется с корпусом. При измерении напряжения на каждой катушке смена полярности показания прибора говорит о прохождении точки замыкания фазы на корпус. Этот метод из-за трудоемкости работ не всегда приемлем, особенно при большом числе катушек.

Лучше использовать магнитный метод (2), который основан на следующем. От источника пониженного напряжения (U до 36 В) од­нофазный переменный ток подводится к концу (или к началу) неис­правной фазы и через реостат и амперметр к корпусу электродвигате­ля. Так как ток переменный, то вокруг проводников с этим током образуется переменное электромагнитное поле. Поэтому пазы с про­водником, по которым течет ток, легко определяются с помощью тонкой стальной пластинки (щупа), которая слегка дребезжит. Последнее дает возможность выявить секции по которым протекает ток от конца фазной обмотки до места замыкания на корпус. Для проверки и уточ­нения найденного места замыкания обмотки ток подводится теперь к началу неисправной фазы. При однократном замыкании обмотки най­денные места замыканий в первом и во втором случае должны сойтись.

Найденную магнитным методом неисправную катушку отсоединяют от остальной обмотки и мегаомметром проверяют правильность установ­ленного места замыкания на корпус.

Этот же метод может быть применен для нахождения места замыка­ния между фазами.

В этом случае напряжение подается вначале к одним концам зам­кнувшихся фаз, а затем к другим. Это дает возможность выявить замкнувшиеся секции.

Внутренний обрыв одной из фаз.

Если обмотка имеет шесть выводов, то оборванная фаза опреде­ляется с помощью тестера или мегаомметром.

Если обмотка имеет только три вывода, то определяется обор­ванная фаза измерением токов или сопротивлений.

При соединении фаз в звезду, (рисунок4.2) ток оборванной фазы равен нулю, а сопротивление, измеренное относительно выхода оборванной фазы, равно “бесконечности”.

Рисунок 4.2- Определение внутреннего обрыва фазы при соединении фаз в звезду.

При соединении фаз в треугольник токи, подходящие к обор­ванной фазе (рисунок 4.3) будут равны и меньше токов в фазе (необорванной), а сопротивление, измеренное на оборванной фазе (C1-C3) будет вдвое больше, чем другие фазы (С1-С2, С2-СЗ).

Рисунок 4.3 - Определение внутреннего обрыва фазы при соединении фаз в треугольник.

После определения оборванной фазы место обрыва определяют с


помощью вольтметра или контрольной лампы (на 36 В) по схе­мам рисунок 4.4-а и 4.4-б.

Рисунок 4.4 - Определение места обрыва в оборванной фазе:

а) с помощью вольтметра; б) с помощью контрольной лампы.

Измеряют напряжение на концах каждой катушки или катушечной группы. В момент показания вольтметра определяется оборванная катушка (рисунок 4.4а). Касаясь щупом от лампы начала и конца каждой катушки, идя от потенциального конца сети, показа­ние лампы покажет на обрыв (лампа погасла, значит обрыв, если с другой стороны, то наоборот).

Для одного из рассматриваемых асинхронных двигателей (с неисправной катушкой) определить и записать обмоточные данные и вычертить схему обмотки.

Осматривают пакет активной стали статора. Пакет стали не должен иметь смещения, вмятин, ослабления прессовки листов желе­за, распушившихся зубцов, прогара.

Целостность стержней короткозамкнутого ротора определяют методом электромагнита переменного тока. При испытании ротор ус­танавливается на электромагнит, подключаемый к сети переменного тока (рисунок 4.5).


Рисунок 4.5 - Определение оборванного стержня ротора с помощью электромагнита: 1- ротор, 2 - стержни ротора, 3 -электромагнит, 4 - стальная пластинка (ножовочное полотно).

Стальная пластинка, перекрывающая паз с целым стержнем будет притягиваться и дребезжать. Если стержень оборван, пластинка не притягивается или притягивается очень слабо. Место разрыва обнаруживается с помощью листа бумаги с насыпанными на него сталь­ными опилками.

Обнаруженные неисправности механических деталей, обмоток статора и ротора, данные электродвигателей, представленных для дефектации занести в дефектовочную ведомость или техноло­гическую карту ремонта.

ТЕХНОЛОГИЧЕСКАЯ КАРТА №

Заказчик _________________________

I Техническая характеристика

II Обмоточные данные

Примечание_____________________________________________________

III Механическая часть

IV Контроль обмоток

Примечания___________________________________________________

V Стендовые испытания

Начальник ОТК____________________________________________

Содержание отчета. В отчете необходимо привести: цель рабо­ты, основные схемы и данные по выявлению неисправностей электродвигателей, представленных для дефектации, эскизы недостаю­щих и требующих изготовления деталей, заполненную технологиче­скую карту ремонта, развернутую схему обмотки статора дви­гателя, у которого требуется заменить обмотку, заключение о результатах дефектации электродвигателей.

Контрольные вопросы.

1 С какой целью проводится дефектация электродвигателя перед ремонтом?

2 В какой последовательности и как проводится дефектация электродвигателя до разборки?

3 К каким последствиям приводит снижение сопротивления изоляции обмотки статора и каким оно должно быть у двигателей с U < 500 В?

4 Как выявить витковое замыкание в обмотке статора при работающем электродвигателе?

5 В какой последовательности и как проводится дефектация электродвигателя после разборки?

6 Какие основные неисправности имеет обмотка статора и как их определить?

7 При включении электродвигателя с короткозамкнутым ротором в сеть наблюдается повышенный нагрев активной стали статора в режиме холостого хода. Какая неисправность электродвигателя?

8 При работе электродвигателя обмотка статора сильно нагрева­ется. Величина тока по фазам неодинакова. Электродвигатель сильно гудит и развивает пониженный крутящий момент. Какие могут быть неисправности в двигателе?

9 Электродвигатель плохо идет в ход и сильно гудит. Величина тока во всех фазах различна и при холостом ходе двигателя пре­вышает номинальную величину. Какая неисправность в электродвига­теле?

10 Двигатель с короткозамкнутым ротором не достигает нормальной скорости вращения, а "застревает" и начинает устойчиво работать при низкой скорости вращения, которая значительно меньше номинальной. Какая неисправность в электродвигателе?


ЛАБОРАТОРНАЯ РАБОТА № 5

Испытание асинхронного электродвигателя

с фазным ротором после ремонта

Цель работы: освоить методику испытаний электродвигателя с фазным ротором после ремонта.

Программа работы:

1 Осмотреть электродвигатель, проверить затяжку крепежных болтов, вращение ротора, записать паспортные данные.

2 Измерить сопротивление изоляции обмоток статора относи­тельно корпуса и относительно друг друга и сопротивление изоля­ции обмотки ротора относительно корпуса.

3 Выполнить маркировку вы­водных концов на постоянном и переменном токе.

4 Измерить сопротивление обмоток статора и ротора постоян­ному току.

5 Проверить коэффициент трансформации асинхронного электро­двигателя с фазным ротором.

6 Провести опыт холостого хода.

7 Провести испытание межвитковой изоляции.

8 Провести опыт короткого замыкания.

9 Провести испытание электрической прочности изоляции.

1 При внешнем осмотре электродвигателя проверяют затяжку крепежных болтов и вращение ротора. При вращении ротора вручную не должно быть его заеданий и люфта в подшипниках. Записываются паспортные данные электродвигателя.

2 Измерение сопротивления изоляции обмоток электродвигателя осуществляется согласно методики, изложенной в общих указаниях (стр. 8-9). . Данные измерений записать в таблицу 5.1.

Таблица 5.1- Сопротивление изоляции обмоток электродвигателя

3 ГОСТом 183-66 предусмотрены обозначения выводов обмоток электрических машин трехфазного переменного тока (таблица 5.2).

Таблица 5.2 - Обозначение выводов обмоток электрических машин трехфазного переменного тока

Обычно выводы всех фаз обмотки статора присоединяют к зажимам, как указано на рисунке 5.1 а. В нек30,3оторых машинах обмотки статора наглухо соединены в звезду и на доску зажимов выведены только четыре вывода: фазы С1, С2, СЗ и нулевая точка 0.

Если маркировки выводов обмоток статора нет, то предварительно находят парные выводы фазы с помощью контрольной лампы один из выводов фазы принимается за начало обмотки и присоединяется к плюсу источника постоянного тока напряжением 4-6 В; один из выво­дов контрольной лампы присоединяется к минусу источника, а вто­рым выводом лампы отыскивается конец обмотки фазы. Или мегаомметр присоединяют зажимом "Линия" мегаомметра к предполагаемому началу фазы обмотки статора и проводом, присоединенным к зажиму "Земля" мегаомметра отыскивается конец фазы. При этом мегаомметр покажет ноль. На каждый вывод фазы надевают после этого бирку с маркировкой (С1,С2 ...).

Маркировка выводных концов проводится на постоянном или пере­менном токе. При постоянном токе наиболее распространены два варианта (рисунок 5.2)

Маркировку выводов проводят с помощью аккумулятора (U = 4 - 6 В) и милливольтметра (М104).

При первом варианте а) примем С1,С2,СЗ за начала фаз 1,2,3, а С4,С5,С6 - за концы этих фаз. Если начало фазы 1 присоединить к "плюсу" батареи аккумуляторов, а конец к «минусу» (рис.5.2,а), то в момент включения тока в обмотках других фаз (2 и 3) бу­дет индуктироваться ЭДС с полярностью "минус" на началах и " плюс" на концах фаз. Милливольтметр присоединяют к фазе 2, а потом к фазе 3. Если стрелка прибора в обоих случаях отклони­лась вправо, то значит все концы обмоток промаркированы правиль­но.

Рисунок 5.2- Схемы проверки маркировки выводов статора с помощью источника постоянного тока: а) - первый вариант; б) и в)- второй вариант; Н и К - соответственно начала и концы обмоток 1,2,3.

При втором варианте б) и в) две фазы соединяют последователь­но (попарно) между собой и импульсом включают на батарею. К третьей фазе присоединяют милливольтметр. Если первые две фазы соединены одноименными зажимами (рисунок 5.2.б.), милливольтметр ничего не покажет. При соединении фаз разноименными зажимами (рисунок 5.2."в") в момент включения батареи стрелка милливольт­метра отклонится вправо.

При переменном токе и с выведенными шестью концами фаз наиболее распространен индукционный метод маркировки выводов (рисунок 5.3).

Рисунок 5.3 - Схема индукционного метода маркировки выводов статора с помощью источника переменного тока:

Н и К - соответственно начала и концы обмоток 1,2,3;

Т V - трансформатор регулировоч­ный.

Понравилась статья? Поделиться с друзьями: