Эволюция эволюционное учение. Эволюционное учение. Филогения и систематика как отражение эволюционных процессов

Эволюционное учение (от лат. еvolutio - развертывание) - система идей и концепций в биологии, утверждающих историческое прогрессивное развитие биосферы Земли, составляющих её биогеоценозов, а также отдельных таксонов и видов, которое может быть вписано в глобальный процесс эволюции вселенной.

Хотя единой и общепризнанной теории биологической эволюции до сих пор не создано, сам факт эволюции сомнению учёных не подвергается, так как имеет огромное число прямых подтверждений. Согласно эволюционному учению, все ныне существующие виды организмов произошли от ранее существовавших путем длительного их изменения. Эволюционное учение занимается анализом индивидуального развития отдельных организмов (онтогенезом), эволюции и путей развития групп организмов (филогенезом) и их адаптаций.

Представления о том, что наблюдаемые в современном мире формы жизни не неизменны, встречаются у античных философов - Эмпедокла, Демокрита, Лукреция Кара. Но нам неизвестно о фактах, которые привели их к такому умозаключению, хотя недостаточно и данных для утверждения, что это гениальная умозрительная догадка.

В христианском мире многие столетия господствовала креационистская точка зрения, хотя высказывались предположения о существовании «допотопных» чудовищ, вызванные редкими в то время находками ископаемых останков.

По мере накопления фактов в естествознании в XVIII в. сложился трансформизм - учение об изменяемости видов. Но сторонники трансформизма (виднейшие - Ж. Бюффон и Э. Жоффруа Сент-Илер во Франции, Э. Дарвин в Англии) для доказательства своих взглядов оперировали главным образом двумя фактами: наличием переходных форм между видами и сходством общего плана строения больших групп животных и растений. Никто из трансформистов не ставил вопрос о причинах изменения видов. Крупнейший натуралист рубежа XVII-XIX вв. Ж. Кювье объяснял смену фаун теорией катастроф.

В 1809 году вышел в свет труд Ж.Б. Ламарка «Философия зоологии», в котором впервые был поставлен вопрос и о причинах изменения видов, эволюции. Ламарк считал, что изменения в окружающей среде ведут и к изменению видов.

Ламарк ввел понятие градаций - перехода от низших форм к высшим. Градации, по Ламарку, происходят в результате присущего всему живому стремлению к совершенству, внутреннее чувство животных порождает стремление к изменениям. Наблюдения за явлениями природы привели Ламарка к двум основным предположениям: «закону неупражнения и упражнения» - развития органов по мере их использования и «наследования благоприобретенных свойств» - признаки передавались по наследству и в дальнейшем либо еще более развивались, либо исчезали. Труд Ламарка не произвел на ученый мир особого впечатления и был забыт ровно на пятьдесят лет.

Новый этап в развитии эволюционной теории наступил в 1859 году в результате публикации основополагающей работы Чарльза Дарвина «Происхождение видов путём естественного отбора или сохранение благоприятствуемых пород в борьбе за жизнь». Основной движущей силой эволюции по Дарвину является естественный отбор. Отбор, действуя на особей, позволяет выживать и оставлять потомство тем организмам, которые лучше приспособлены для жизни в данном окружении. Действие отбора приводит к распадению видов на части - дочерние виды, которые, в свою очередь, со временем расходятся до родов, семейств и всех более крупных таксонов.

Приведенные Дарвином аргументы в пользу идеи эволюции обеспечили этой теории широкое признание. Но и Дарвин был убежден в наследуемости благоприобретенных признаков. Непонимание дискретной природы наследственности приводило к неразрешимому парадоксу: изменения должны были затухать, но фактически этого не происходило. Противоречия были столь серьезны, что и сам Дарвин в конце жизни усомнился в правильности своей теории, хотя в это время уже были проведены опыты Менделя, которые могли бы ее подтвердить. Кажущаяся слабость дарвинизма стала причиной возрождения ламаркизма как неоламаркизма.

Лишь труд последующих многих поколений биологов привел к появлению синтетической теории эволюции (СТЭ). В отличие от теории Дарвина, СТЭ не имеет одного автора и одной даты возникновения, а представляет собой плод коллективных усилий ученых разных специальностей из многих стран. После переоткрытия законов Менделя, доказательства дискретной природы наследственности и особенно после создания теоретической популяционной генетики учение Дарвина приобрело прочный генетический фундамент. В 1930-40-е годы быстро произошел широкий синтез генетики и дарвинизма. Генетические идеи проникли в систематику, палеонтологию, эмбриологию, биогеографию. Авторы синтетической теории расходились во мнениях по ряду фундаментальных проблем и работали в разных областях биологии, но они были практически единодушны в трактовке следующих основных положений: элементарной единицей эволюции считается локальная популяция; материалом для эволюции являются мутационная и рекомбинационная изменчивость; естественный отбор рассматривается как главная причина развития адаптаций, видообразования и происхождения надвидовых таксонов; дрейф генов и принцип основателя выступают причинами формирования нейтральных признаков; вид есть система популяций, репродуктивно изолированных от популяций других видов, и каждый вид экологически обособлен (один вид - одна ниша); видообразование заключается в возникновении генетических изолирующих механизмов и осуществляется преимущественно в условиях географической изоляции; заключения о причинах макроэволюции (происхождение надвидовых таксонов) могут быть получены за счет исследования микроэволюции, построенного на основе точных экспериментальных данных, полевых наблюдений и теоретических дедукций. Существует также группа эволюционных представлений, согласно которым видообразование (ключевой момент биологической эволюции) происходит быстро - за несколько поколений. При этом влияние каких-либо длительно действующих эволюционных факторов исключается (кроме отсекающего отбора). Подобные эволюционные воззрения называются сальтационизмом (лат. «saltatotius», от «salto» - скачу, прыгаю), представления об эволюции как прерывистом процессе с этапами быстрых прогрессивных эволюционных изменений, чередующихся с периодами медленных, незначительных изменений. Сальтационизм является слабо разработанным направлением в теории эволюции. Согласно последним представлениям СЭТ градуальные (идущие с постоянной небольшой скоростью) изменения могут чередоваться с сальтационными.

| ]

Идея изменения организмов с течением времени впервые встречается у греческих философов-досократиков . Представитель милетской школы Анаксимандр считал, что все животные произошли из воды, после чего вышли на сушу. Человек, по его представлениям, зародился в теле рыбы . У Эмпедокла можно найти идеи гомологии и выживания наиболее приспособленных . Демокрит считал, что наземные животные произошли от земноводных, а те, в свою очередь, самозародились в илу . В отличие от этих материалистических взглядов, Аристотель считал все природные вещи несовершенными проявлениями различных постоянных естественных возможностей, известных как «формы», «идеи» или (в латинской транскрипции) «виды» (лат. species ) . Однако Аристотель не постулировал того, что реальные типы животных являются точными копиями метафизических форм, и приводил примеры, как могут образовываться новые формы живых существ .

В XVII веке появился новый метод, который отклонял аристотелевский подход и искал объяснения естественных явлений в законах природы, единых для всех видимых вещей и не нуждающихся в неизменяемых естественных типах или божественном космическом порядке. Но этот новый подход с трудом проникал в биологические науки, которые стали последним оплотом понятия неизменного естественного типа. Джон Рэй использовал для животных и растений более общий термин для определения неизменных природных типов - «вид» (лат. species ), но, в отличие от Аристотеля, он строго определил каждый тип живого существа как вид и считал, что каждый вид может быть определён по чертам, которые воспроизводятся от поколения к поколению. По Рэю, эти виды созданы Богом, но могут быть изменчивы в зависимости от местных условий . Биологическая классификация Линнея также рассматривала виды неизменными и созданными по божественному плану .

Однако в то время были и натуралисты, которые размышляли об эволюционном изменении организмов, происходящем в течение длительного времени. Мопертюи писал в 1751 году об естественных модификациях, происходящих во время воспроизводства, накапливающихся в течение многих поколений и приводящих к формированию новых видов. Бюффон предположил, что виды могут дегенерировать и превращаться в другие организмы . Эразм Дарвин считал, что все теплокровные организмы, возможно, происходят от одного микроорганизма (или «филамента») . Первая полноценная эволюционная концепция была предложена Жаном Батистом Ламарком в 1809 году в труде «Философия зоологии ». Ламарк считал, что простые организмы (инфузории и черви) постоянно самозарождаются. Затем эти формы изменяются и усложняют своё строение, приспосабливаясь к окружающей среде. Эти приспособления происходят за счёт прямого влияния окружающей среды путём упражнения или неупражнения органов и последующей передачи этих приобретённых признаков потомкам (позже эта теория получила название ламаркизм). Эти идеи были отвергнуты натуралистами, поскольку не имели экспериментальных доказательств. Кроме того, всё ещё были сильны позиции учёных, считавших, что виды неизменны, а их сходство свидетельствует о божественном замысле. Одним из самых известных среди них был Жорж Кювье .

Концом доминирования в биологии представлений о неизменности видов стала теория эволюции посредством естественного отбора , сформулированная Чарльзом Дарвином . Частично под воздействием «Опыта закона о народонаселении » Томаса Мальтуса , Дарвин заметил, что прирост населения ведёт к «борьбе за существование », в ходе которой начинают преобладать организмы с благоприятными признаками, поскольку те, у кого их нет, погибают. Этот процесс начинается, если каждое поколение производит больше потомства, чем может выжить, что приводит к борьбе за ограниченные ресурсы. Это могло объяснить происхождение живых существ от общего предка за счёт законов природы . Дарвин развивал свою теорию начиная с 1838 года, пока Альфред Уоллес в 1858 году не прислал ему свою работу с такими же идеями. Статья Уоллеса была опубликована в том же году в одном томе трудов Линнеевского общества вместе с краткой выдержкой из работ Дарвина . Публикация в конце 1859 года книги Дарвина «Происхождение видов », в которой детально объясняется концепция естественного отбора, привела к более широкому распространению дарвиновской концепции эволюции.

С тех пор современный синтез был расширен для объяснения биологических явлений на всех уровнях организации живого и этапах индивидуального развития. Последнее стало предпосылкой появления концепции Evo-Devo .

Критика эволюционизма [ | ]

Критика эволюционизма появилась сразу после того, как в начале девятнадцатого века появились эволюционные идеи . Эти идеи заключались в том, что развитие общества и природы управляется естественными законами , которые стали известны образованной публике по книге Джорджа Комбе (англ.) русск. «The Constitution of Man» () и анонимной «Vestiges of the Natural History of Creation» (). После того, как Чарльз Дарвин опубликовал «Происхождение видов », большая часть научного сообщества согласилась с тем, что эволюция - это факт , поскольку теория Дарвина основана на опытных данных. В 30-х и 40-x годах XX века учёные разработали синтетическую теорию эволюции (СТЭ), которая объединила идею дарвиновского естественного отбора с законами наследственности и данными популяционной генетики . С этого времени существование эволюционных процессов и способность современных эволюционных теорий объяснить, почему и как протекают эти процессы, поддерживается подавляющим большинством биологов . После появления СТЭ почти вся критика эволюционизма осуществляется религиозными деятелями (главным образом протестантами), а не учёными .

Эволюционизм и религия [ | ]

Следует отметить, что обвинения в атеизме и отрицании религии, приводимые некоторыми противниками эволюционного учения, основаны в известной мере на непонимании природы научного знания : в науке никакая теория , в том числе и теория биологической эволюции, не может как подтвердить, так и отрицать существование таких потусторонних миру субъектов, как Бог (хотя бы потому, что Бог при творении живой природы мог использовать эволюцию, как утверждает богословская доктрина «теистический эволюционизм »).

Ошибочны также попытки противопоставить эволюционную биологию религиозной антропологии . С точки зрения методологии науки, популярный тезис «человек произошёл от обезьяны » является лишь чрезмерным упрощением (см. редукционизм) одного из выводов эволюционной биологии (о месте человека как биологического вида на филогенетическом древе живой природы) хотя бы потому, что понятие «человек » многозначно: человек как предмет физической антропологии отнюдь не тождествен человеку как предмету философской антропологии , и сводить философскую антропологию к физической некорректно.

Некоторые верующие разных религий не находят эволюционное учение противоречащим их вере. Теория биологической эволюции (наряду со многими другими науками - от астрофизики до геологии и радиохимии) противоречит только буквальному прочтению сакральных текстов, повествующих о сотворении мира, и для некоторых верующих это является причиной отвержения практически всех выводов естественных наук, изучающих прошлое материального мира (буквалистский креационизм).

Среди верующих, исповедующих доктрину буквалистского креационизма, имеется некоторое количество людей, которые пытаются найти научные доказательства своей доктрине (так называемый «научный креационизм »). Научное сообщество признает подобные доказательства не соответствующими действительности, а сами направления - псевдонаучными .

Признание эволюции Католической церковью [ | ]

См. также [ | ]

Примечания [ | ]

  1. Kutschera U., Niklas K. J. The modern theory of biological evolution: an expanded synthesis // Naturwissenschaften. - 2004. - Vol. 91, no. 6. - P. 255-276.
  2. , с. 118-119.
  3. , с. 124-125.
  4. , с. 127.
  5. Torrey H. B., Felin F. Was Aristotle an evolutionist? // The Quarterly Review of Biology. - 1937. - Vol. 12, no. 1. - P. 1-18.
  6. Hull D. L. The metaphysics of evolution // The British Journal for the History of Science. - 1967. - Vol. 3, no. 4. - P. 309-337.
  7. Stephen F. Mason. . A history of the sciences. - Collier Books, 1968. - 638 p. - P. 44-45.
  8. , с. 171-172.
  9. Ernst Mayr . . The growth of biological thought: diversity, evolution, and inheritance . - Harvard University Press, 1982. - ISBN 0674364465 . - P. 256-257.
  10. Carl Linnaeus (1707-1778) (неопр.) (недоступная ссылка) Архивировано 30 апреля 2011 года.
  11. , с. 181-183.
  12. , p. 71-72.
  13. Erasmus Darwin (1731-1802) (неопр.) (недоступная ссылка) . // University of California Museum of Paleontology. Дата обращения 29 февраля 2012. Архивировано 19 января 2012 года.
  14. , с. 201-209.
  15. , p. 170-189.
  16. , с. 210-217.
  17. , p. 145-146.
  18. , p. 165.
  19. , с. 278-279.
  20. , с. 282-283.
  21. , с. 283.
  22. Stamhuis I. H., Meijer O. G., Zevenhuizen E. J. // Isis. - 1999. - Vol. 90, no. 2. - P. 238-267.
  23. , с. 405-407.
  24. Dobzhansky T. Nothing in biology makes sense except in the light of evolution // The American Biology Teacher. - 1973. - Vol. 35, no. 3. - P. 125-129.
  25. Avise J. C., Ayala F. J. In the Light of Evolution IV. The Human Condition (introduction) // Proceedings of the National Academy of Sciences USA. - 2010. - Vol. 107. - P. 8897-8901.
  26. Johnston, Ian C. …And Still We Evolve. Section Three: The Origins of Evolutionary Theory (неопр.) . // Liberal Studies Department, Malaspina University College (1999). Дата обращения 30 апреля 2010. Архивировано 27 сентября 2006 года.
  27. IAP Statement on the Teaching of Evolution Архивная копия от 27 сентября 2007 на Wayback Machine , Interacademy Panel.
  28. В подробной работе о креационизме «Креационисты (англ.) русск. » историк Рональд Намберс проследил религиозную мотивацию и попытки научного анализа известных креационистов, начиная с Джорджа Фредерика Райта (англ.)

Биологическая эволюция - необратимое, направленное, историческое развитие живой природы, сопровождающееся изменением генетического состава популяций, формированием адаптаций, образованием новых и вымиранием старых видов, изменениями биогеоценозов и биосферы в целом.

Эволюционное учение изучает общие закономерности и движущие силы развития живого на Земле. При изучении эволюционного процесса целесообразно выделять два уровня: популяционно-видовой уровень и уровни надвидового порядка (семейства, роды, отряды и т.д.). Популяции и виды - структуры реально существующие во времени и пространстве, надвидовые порядки - это объединение реально существующих видов в более крупные систематические таксоны на основании определенных признаков, в первую очередь, связанных с общностью их происхождения. Поэтому в эволюционном учении выделяют два раздела: микроэволюцию и макроэволюцию.

Микроэволюция - это начальный этап эволюционных изменений, который происходит внутри вида и приводит к образованию новых внутривидовых группировок, а в конечном итоге - к образованию новых видов. Макроэволюция - изучает эволюцию надвидовых порядков. Основные процессы, приводящие к микро- и макроэволюции, сходны. Принципиальная разница заключается во времени в течение которого эти процессы происходят: микроэволюция - десятки и сотни тыс. лет, макроэволюция - млн. лет.

Методы изучения эволюции:

Для анализа микроэволюции

1. Популяционно-генетический метод (изучает генетическую структуру популяций, анализирует изменения генофонда популяций во времени, а также интенсивность мутационного процесса в популяциях)

2. Гибридологический метод (позволяет анализировать роль комбинативной изменчивости в фенотипическом разнообразии особей внутри вида)

3. Экологические методы (позволяют выяснить роль биотических и абиотических факторов, влияющих на структуру и динамику видов). Разнообразны по своим формам: наблюдение, эксперимент, моделирование.

Для анализа макроэволюции

  1. Палеонтологические

а) изучение ископаемых переходных форм (девонская ихтиостега, юрская первоптица Archaeopteryx, звероподобная рептилия Lycaenops)

б) восстановление филогенетических рядов - последовательность ископаемых форм, связанных друг с другом в процессе эволюции (ряды моллюсков, лошадей)

2. Морфологические методы - основаны на принципе: внутреннее сходство организмов может показать эволюционное родство сравниваемых форм. Изучаются строение гомологичных органов, рудиментарные органы, атавизмы, гистологические особенности тканей.

3. Эмбриологические методы направлены на выявление зародышевого сходства и изучение рекапитуляции. Закон зародышевого сходства сформулирован К.Бэром «Чем более ранние стадии онтогенеза исследуются, тем больше сходства обнаруживается между организмами». Сущность рекапитуляции заключается в том, что входе эмбрионального развития как бы повторяются (рекапитулируют) многие черты строения предковых форм: на ранних стадиях развития повторяются признаки более отдаленных предков, а на более поздних стадиях - близких предков.

  1. Методы биохимии и молекулярной генетики изучают строение белков и нуклеиновых кислот организмов, относящихся к разным семействам, отрядам, классам. По степени различий в строении белков и нуклеотидов можно установить степень филогенетического родства различных таксонов.

Учение о микроэволюции

Основные процессы, приводящие к микроэволюции, происходят внутри вида, во внутривидовых группировках. Особи любого вида распределены в пределах видового ареала неравномерно. Центры наибольшего скопления особей являются отдельными популяциями данного вида. Именно в популяциях происходит события, приводящие к образованию новых видов. Поэтому популяции являются элементарными эволюционными единицами.

Популяция - минимальная самовоспроизводящаяся группа особей, на протяжении длительного времени населяющая определенное пространство, образующая самостоятельную генетически открытую систему. Вид, в отличие от популяции, является генетически закрытой системой: существуют различные барьеры, препятствующие скрещиванию особей разных видов. Эти барьеры называются термином «изоляция». Различают типы популяций: островковый и ленточный.

Основные характеристики популяции .

  1. 1. Экологические характеристики.

1. Популяционный ареал (естественные преграды, радиус индивидуальной активности, наличие корма, партнера для спаривания, численности особей). Различают:

а) трофический ареал

б) репродуктивный ареал

2. Численность особей в популяции (плодовитость, продолжительность жизненного цикла, время достижения репродуктивного периода). Особое значение имеет минимальная численность особей, по достижению которой популяция может исчезнуть по различным причинам (антропогенные воздействия, стихийные бедствия, заболевания внутри популяции).

3. Динамика популяций . Численность любой популяции подвержена постоянным колебаниям в результате воздействия различных биотических и абиотических факторов. Эти колебания численности получили названия «популяционные волны». Популяционные волны могут иметь сезонными, или периодическими (насекомые, однолетние растения) и непериодическими (изменения в системе жертва - хищник, благоприятные условия в цепи питания - наличие большого количества корма).

4. Возрастной состав популяции определяется наличием в популяции особей различных возрастных групп. Нарушение воспроизводства популяции и, как результат, старение популяции является первым шагом к ее исчезновению.

5. Половой состав популяции определяется первичным, вторичным и третичным соотношением полов. Половая структура популяции - это численное соотношение самцов и самок в разных возрастных группах. О соотношении полов можно говорить только в случае наличия в популяции разнополых особей. Основным генетическим механизмом, определяющим соотношение полов, является гетерогаметность какого-либо пола.

  1. 2. Генетические характеристики популяции

1. Генофонд популяции - совокупность всех генов особей в популяции. В эту совокупность включены гены, которые передавались от предыдущих поколений, и гены, возникшие в данный исторический момент существования популяции. Вновь возникшие гены фенотипически не проявляются (поскольку большинство из них оказываются рецессивными), но их наличие в дальнейшем могут значительно повлиять на судьбу популяции.

2. Генетическая гетерогенность популяции характеризуется разнообразием генотипов особей в популяции. Любая особь имеет свой индивидуальный генотип, который определяет индивидуальность фенотипических признаков. Основными механизмами этой индивидуальности является комбинативная изменчивость и мутационный процесс.

Генетические процессы в популяции. Основными генетическими характеристиками популяции являются частота встречаемости:

Генов (количественное соотношение аллелей)

Генотипов (количественное соотношение генотипов)

Фенотипов (количественное соотношение фенотипов)

В основе соотношений этих показателей лежат механизмы комбинативной изменчивости: распределение хромосом и генов по время мейоза и случайное слияние гамет при оплодотворении.

Математическое обоснование этих соотношение предложили Дж.Харди и Г.Вайнберг, их закон позволяет рассчитать относительную частоту генотипов и фенотипов в популяции. Но следует помнить, что этот закон применим для идеальной популяции, а одним из основных критериев данной популяции является ее многочисленность. Другими словами, соотношения генов и генотипов в популяциях могут сохраняться только при большом количестве особей. В малых же популяциях соотношения генотипов могут нарушаться. Отечественными учеными Н.П.Дубининым и Д.Д.Ромашевым установлено, что в небольших популяциях в силу случайных причин гетерозиготные особи исчезают, популяция становится генетически однородной. В ней начинают преобладать особи с генотипами АА и аа. Это явление получило название «дрейфа генов» или генетико-автоматические процессы.

Поддержание в популяции определенных соотношений генотипов приводит к наличию в ней внутрипопуляционного полиморфизма - существование в популяции двух и более различных генетических, а, следовательно, и фенотипических, групп в состоянии длительного равновесия. Примеры: люди с разными группами крови, блондины и брюнеты, голубые глаза и карие глаза и т.д.

Генетическая гетерогенность популяции определяет не только фенотипическое многообразие особей, но и влияет на историческую перспективу существования популяции и вида в целом. Но каким бы разнообразным не был генофонд популяции, он сам по себе не может обеспечить протекание эволюционного процесса: он должен оказаться под действие каких-то факторов. И эти факторы получили название элементарные эволюционные факторы.

Элементарные эволюционные факторы.

1.Мутационный процесс. Оценивая роль мутаций в процессах эволюции следует отметить следующее:

Мутация возникает у одной особи и передается одной дочерней. В дальнейшем при смене поколений происходит процесс накопления мутации в популяции;

При половом размножении передаваться потомкам могут только генеративные мутации;

Мутация не должна отрицательно влиять на жизнеспособность или репродуктивные функции организма, т.е. по биологическому значению она должна быть нейтральной. А вредность или полезность мутации проявится в ходе естественного отбора. Но следует также помнить, что вредность и полезность имеют относительный характер. Примеры, нелетающие формы насекомых на островах (Ч.Дарвин), прямохождение - болезни человека, серповидноклеточная анемия - малярия;

Мутации могут изменять любые наследственные признаки и свойства организма;

Проявление мутаций зависит от той генетической среды, в которую попадает мутантный ген. Это находит отражение на фенотипических особенностях проявления генов - экспрессивность и пенетрантность.

Рассматривая роль мутаций, следует также учитывать, что возникшая мутация, приводит к исчезновению ранее существующего признака (свойства). Генофонд популяции - результат длительного отбора лучших комбинаций генов. Поэтому эволюционно возникли механизмы, ограничивающие генетическую изменчивость:

На уровне организмов: митоз и мейоз

На уровне клеток: парность хромосом - перевод мутаций в гетерозиготное

состояние

На уровне ДНК: механизмы репарации

Значение мутационного процесса. Поддерживает высокую степень гетерогенности природных популяций, тем самым создает основу для действия других эволюционных факторов. Мутационный процесс - поставщик элементарного эволюционного материала.

2.Популяционные волны. Изменения численности особей характерны для любой популяции. Это происходит в результате действия различных абиотических и биотических факторов, которые могут приводить к возрастанию или, наоборот, снижению численности популяции. А колебания численности могут быть различными: в тысячи, сотни тысяч, и даже млн. раз. В популяции, пережившей сокращение численности, частоты аллелей могут существенно отличаться от исходной популяции. Оставшийся генофонд определит новую генетическую структуру всей популяции в период следующего увеличения численности. При этом существующие ранее мутации в небольших концентрациях могут исчезнуть, концентрация других мутаций может случайно увеличиться. В этом случае популяционные волны выполняют роль поставщика эволюционного материала.

При увеличении численности популяции, особи мигрируют, что приводит к расширению популяционного ареала. На границах ареала могут быть различные условия обитания. А в различных условиях может наблюдаться преимущественное размножение каких-то определенных групп организмов. Пример, меланизм у бабочек. В этом случае популяционные волны способствуют испытанию новых генотипов, выявляют полезность или вредность признаков.

3.Изоляция - возникновение любых барьеров, препятствующих свободному скрещиванию. Препятствие скрещиванию ведет к закреплению и увеличению различий между популяциями.

В природе существует пространственная изоляция и биологическая изоляция. Пространственная изоляция может существовать в двух формах: изоляция какими-либо барьерами (вода, суша, горы) и изоляция расстоянием, которая определяется возможностью скрещивания близко живущих особей.

Биологическую изоляцию можно разделить на докопулятивную (устраняющую скрещивание) и послекопулятивную.

Докопулятивная изоляция представлена формами: эколого-этологической (организмы занимают разные экологические ниши: болотные и лесные птицы; различные сроки образования гамет, различные инстинкты спаривания и гнездования) и морфофизиологической изоляцией (размеры организмов, различия в строении органов размножения).

Послекопулятивная или собственно-генетическая изоляция обусловлена механизмами, которые нарушают слияние гамет, нормальное развитие эмбриона, возникновение стерильных гибридов, пониженную жизнеспособность гибридов.

Значение изоляции: закрепляет и усиливает начальные этапы генетической дифференцировки популяции.

Движущим и направляющим элементарным эволюцион-ным фактором безусловно является естественный отбор.

Естественный отбор осуществляется в природе через борьбу за существование, как в прямой форме (внутривидовая и межвидовая), так и в косвенной форме (борьба с неблагоприятными условиями среды). Ч.Дарвин обосновал предпосылки естественного отбора:

Неопределенная изменчивость (генотипическая - современ-ный термин)

«Любой, незначительный на первый взгляд, признак, при изменении условий среды, может сыграть решающую роль в борьбе за жизнь»

Стремление организмов размножаться в геометрической прогрессии.

Ч.Дарвин писал: «Сохранение благоприятных индивидуальных отличий и вариаций и уничтожение тех, которые неблагоприятны, я называю ЕСТЕСТВЕННЫМ ОТБОРОМ, ИЛИ ВЫЖИВАНИЕМ НАИБОЛЕЕ ПРИСПОСОБЛЕННЫХ».

Однако в ходе естественного отбора значение имеет не выживание или гибель, а дифференциальное размножение особей. Сам факт выживания без оставления потомства не будет иметь последствий для эволюции. Для эволюции перспективны только те особи, которые могут оставить многочисленное потомство. Поэтому в современной трактовке, естественный отбор - избирательное сохранение и воспроизведение генотипов. Но отбор генотипов происходит исключительно через отбор фенотипов, поскольку в фенотипе отражаются особенности генотипа. И при этом естественный отбор затрагивает все жизненно важные признаки и свойства.

В настоящее время выделяется более 30 форм естественного отбора, но основными формами можно назвать: стабилизирующий, движущий, дизруптивный, половой отбор.

1.Стабилизирующий отбор - это преимущественное выживание организмов, обладающих признаками, не имеющими заметных отклонений от нормы, свойственной данной популяции. Этот отбор имеет место при стабильных условиях существования популяции. Классический пример: Г.Бампас - 1911г. - г. Манхэттен - 327 воробьев окоченевших от мороза и метели: отклонения по средней величины по любому признаку (длина крыльев, длина цевки, высота клюва, масса и длина тела) способствовали элиминации особей из популяции. Действием стабилизирующего отбора объясняются все случаи сохранения признаков на любых уровнях организации: 2 глаза, пятипалая конечность, масса тела, определенный уровень гормонов (45, ХО) и т.д. Но стабилизирующий отбор не препятствует накоплению мутаций, которые на данном этапе существования популяции, фенотипически не проявляются. Это приводит к созданию резерва наследственной изменчивости. При изменении условий среды эта изменчивость служит материалом для преобразования популяции под действием движущего отбора.

2. Движущий отбор приводит смещению нормы реакции признака в сторону увеличения или уменьшения. При направленном изменении среды выживают особи, обладающие индивидуальными особенностями, которые соответствуют этим изменениям. Классический пример: шея и конечности жирафа. Признаки, способствующие выживанию при низких температурах: увеличение плодовитости, увеличение размеров печени и сердца (усиление энергетического обмена), увеличение размеров тела (унижение теплоотдачи) - результат движущего отбора. Эта форма отбора приводит к возникновению новых приспособлений через направленную перестройку генофонда популяции.

В природе движущий и стабилизирующий отбор постоянно сосуществуют вместе, и можно говорить лишь о преобладании той или иной формы в данный период времени по данному признаку.

3. Дизруптивный отбор направлен на разделение исходной популяции на две или более различных морфологических групп.

Три, перечисленные выше формы отбора, характеризуют три возможных состояния популяции: ее неизменность, однонаправленное изменение и разнонаправленное изменение, ведущее к раздроблению.

4. Половой отбор - происходит между особями одного пола за возможность участвовать в половом процессе. В этом случае яркая окраска, особенности пения и крика, орудия для турнирного боя, развитие мышечной системы играют важную роль в определении партнера.

Пути и способы видообразования

Взаимодействие элементарных эволюционных факторов приводит к конечному результату микроэволюции - видообразованию. Видообразование - это разделение (во времени и пространстве) прежде единого вида на два или несколько. А с позицией генетики видообразование - разделение генетически открытой системы популяции на генетически закрытые системы новых видов.

Различают следующие пути видообразования:

1. Истинное - одна популяция дает начало двум новым видам. В этом случае происходит увеличение численности видов.

2. Филитическое - новый вид возникает посредством постепенного изменения во времени одного и того же вида без какой-либо дивергенции (расхождения) исходной группы. Доказать данную форму видообразования можно лишь только с привлечением палеонтологического материала. Один из возможных примеров - эволюция лошадей.

3. Гибридогенное - новый вид возникает в результате гибридизации двух уже существующих видов. Большинство примеров связаны с растениями: культурная слива (гибрид алычи и терна), рябинокизильник, гибридные формы малины, табака, брюквы. У животных - ханорик (гибрид хоря и норки).

В истинном видообразовании можно выделить два основных способа: аллопатрическое и симпатрическое видообразование.

Аллопатрическое видообразование. В этом случае разделяющиеся популяции пространственно (географически) изолируются друг от друга.

Основные этапы:

1.Изменение генетического состава популяции, накопление

резерва наследственной изменчивости.

2. Популяционные волны: при возрастании численности

особей в популяции происходит их миграция, в резуль-

тате значительно расширяется популяционный ареал.

На границах ареала могут оказаться различные условия,

в которых преимущественно будут размножаться опре-

деленные группы организмов.

При снижении численности особей исходный ареал по-

пуляции может измениться: уменьшиться или распаде-

ться на два (или более). В последнем случае исходная

популяция разделяется на две, а между ними возникает

географическая изоляция. Но ранних этапах разделе-

ния популяций она относительная: особи чаще скрещи-

ваются внутри своей популяции, чем с соседней.

3. Географически изолированные популяции определен-

ное время существуют изолированно. В каждой из них

происходят дополнительные мутации, которые приво-

дят к формированию различных генофондов. А это

приводит к возникновению различных форм биологи-

ческой изоляции, в том числе и генетической. С момен-

возникновения двух генетически закрытых систем, мы

вправе говорить о возникновении двух новых видов из

единой популяции.

На всех этапах основную роль играет естественный отбор.

Симпатрическое видообразование - видообразование, происходящее в пределах исходного ареала вида на основе непространственной изоляции. Исследователи выделяют несколько вариантов изоляции, способных разделить первично единую популяцию: хронологическую (по срокам размножения), экологическую и генетическую.

В качестве хронологической (сезонной) изоляции приводятся примеры видообразования в озерах. Так, например, в оз. Севан обитает эндемичный вид форели, представленный несколькими формами, которые отличаются морфоло-гически, а также по сроком нереста.

Генетическая изоляция возникает в результате значительного изменения кариотипа группы особей внутри исходной популяции. Чаще мутации представлены полиплоидиями. Полиплоидные формы известны у хризантем, картофеля, табака.

Эволюция филогенетических групп

Среди форм можно выделить первичные - филетическую эволюцию и дивергенцию, и вторичные - параллелизм и конвергенцию.

Направления эволюции:

Арогенез - развитие группы с существенным расширением адаптивной зоны (комплекс экологических условий, представляющих возможную среду жизни для данной группы организмов) и с выходом в другие природные зоны под влиянием приобретения группой каких-то крупных, ранее отсутствующих приспособлений (ароморфозы). Результатом арогенеза является возникновение новых типов и классов животного и растительного мира.

Аллогенез - развитие группы внутри одной адаптивной зоны с возникновением близких форм, различающихся адаптациями одного масштаба (идиоадаптации). Результатом является появление внутри класса отрядов, семейств, родов.

Расстановка ударений: эволюцио`нное уче`ние

Эволюционное учение - система идей и концепций в биологии, утверждающих историческое прогрессивное развитие биосферы Земли, составляющих её биогеоценозов, а также отдельных таксонов и видов, которое может быть вписано в глобальный процесс эволюции вселенной. Эволюционное учение занимается анализом становления адаптации (приспособлений), эволюции индивидуального развития организмов (онтогенеза), факторов, направляющих эволюцию, и конкретных путей исторического развития (филогенеза) отдельных групп организмов и органического мира в целом. Основу эволюционного учения составляет эволюционная теория. К эволюционному учению относятся также концепции происхождения жизни и происхождения человека.

История эволюционного учения

Первые представления о развитии жизни, содержащиеся в трудах Эмпедокла, Демокрита, Лукреция Кара и других античных философов, носили характер гениальных догадок и не были обоснованы биологическими фактами. В XVIII в. в биологии сформировался трансформизм - учение об изменяемости видов животных и растений, противопоставлявшееся креационизму, основанному на концепции божественного творения и неизменности видов. Виднейшие трансформисты 2-й половины XVIII и 1-й половины XIX вв.- Ж. Бюффон и Э. Ж. Сент-Илер во Франции, Э. Дарвин в Англии, И. В. Гёте в Германии, К. Ф. Рулье в России - обосновывали изменяемость видов главным образом двумя фактами: наличием переходных форм между близкими видами и единством плана строения организмов больших групп животных и растений. Однако они не рассматривали причин и факторов изменения видов.

Первая попытка создания целостной эволюционной теории принадлежит французскому естествоиспытателю Ж. Б. Ламарку, изложившему в своей «Философии зоологии» (1809) представления о движущих силах эволюции. Согласно Ламарку, переход от низших форм жизни к высшим - градация - происходит в результате имманентного и всеобщего стремления организмов к совершенству. Разнообразие видов на каждом уровне организации Ламарк объяснял модифицирующим градацию воздействием условий среды. Согласно первому «закону» Ламарка, упражнение органов приводит к их прогрессивному развитию, а неупражнение - к редукции; согласно второму «закону», результаты упражнения и неупражнения органов при достаточной продолжительности воздействия закрепляются в наследственности организмов и далее передаются из поколения в поколение уже вне зависимости от вызвавших их воздействий среды (см. Ламаркизм, Приобретённые признаки). «Законы» Ламарка основаны на ошибочном представлении о том, что природе свойственны стремление к совершенствованию и наследование организмами благоприобретенных свойств.

Истинные факторы эволюции вскрыл Ч. Дарвин, тем самым создав научно обоснованную эволюционную теорию (изложена в книге «Происхождение видов путём естественного отбора, или Сохранение благоприятствуемых пород в борьбе за жизнь», 1859). Движущими силами эволюции, по Дарвину, являются: неопределённая изменчивость - наследственно обусловленное разнообразие организмов каждой популяции любого вида, борьба за существование, в ходе которой гибнут или устраняются от размножения менее приспособленные организмы, и естественный отбор - переживание более приспособленных особей, в результате которого накапливаются и суммируются полезные наследственные изменения и возникают новые адаптации. Ламаркизм и дарвинизм в трактовке эволюции диаметрально противоположны: ламаркизм эволюцию объясняет адаптацией, а дарвинизм адаптацию - эволюцией. Кроме ламаркизма, существует ещё ряд концепций, отрицающих значение отбора, как движущей силы эволюции (Автогенез, Мутационизм, Номогенез и др.). Развитие биологии подтвердило правильность дарвиновской теории. Поэтому в современной биологии термины «дарвинизм» и «Эволюционное учение» часто употребляются как синонимы. Близок по смыслу и термин «синтетическая теория эволюции», который подчёркивает сочетание (синтез) основные положений теории Дарвина, генетики и ряда эволюционных обобщений др. областей биологии.

Современное эволюционное учение

Развитие генетики позволило понять механизм возникновения неопределённой наследственной изменчивости, предоставляющей материал эволюции. В основе этого явления лежат стойкие изменения наследственных структур - мутации. Мутационная изменчивость не направлена: вновь возникающие мутации не адекватны условиям окружающей среды и, как правило, нарушают уже существующие адаптации. Для организмов, не имеющих оформленного ядра (Прокариоты), мутационная изменчивость служит основным материалом эволюции. Для организмов, клетки которых имеют оформленное ядро (Эукариоты), большое значение имеет комбинативная изменчивость - комбинирование генов в процессе полового размножения. Элементарной единицей эволюции является популяция. Относительная обособленность популяций приводит к их репродуктивной изоляции - ограничению свободы скрещивания особей разных популяций. Репродуктивная изоляция обеспечивает уникальность генофонда - генетического состава каждой популяции - и тем самым возможность её самостоятельной эволюции. В процессе борьбы за существование проявляется биологическая разнокачественность составляющих популяцию особей, определяемая комбинативной и мутационной изменчивостью. При этом часть особей гибнет, а другие выживают и размножаются. В результате естественного отбора вновь возникающие мутации комбинируются с генами уже прошедших отбор особей, их фенотипическое выражение меняется, и на их основе возникают новые адаптации. Таким образом, именно отбор является главным движущим фактором эволюции, обусловливающим возникновение новых адаптаций, преобразование организмов и видообразование. Отбор может проявляться в разных формах: стабилизирующий, обеспечивающий сохранение в неизменных условиях среды уже сформировавшихся адаптации, движущий, или ведущий, приводящий к выработке новых адаптаций, и дизруптивный, или разрывающий, обусловливающий возникновение полиморфизма при разнонаправленных изменениях среды обитания популяции.

В современном эволюционном учении представление о факторах эволюции обогатилось выделением популяции как элементарной единицы эволюции, теорией изоляции и углублением теории естественного отбора. Анализ изоляции, как фактора, обеспечивающего увеличение разнообразия жизненных форм, лежит в основе современных представлений о видообразовании и структуре вида. Наиболее полно изучено аллопатрическое видообразование, связанное с расселением вида и географических изоляцией окраинных популяций. Менее изучено симпатрическое видообразование, обусловленное экологической, хронологической или этологической (поведенческой) изоляцией. Эволюционные процессы, протекающие внутри вида и завершающиеся видообразованием, часто объединяют под общим названием микроэволюции. Макроэволюцией называется историческое развитие групп организмов (таксонов) надвидового ранга. Эволюция надвидовых таксонов является результатом видообразования, происходящего под действием естественного отбора. Однако использование разных масштабов времени (эволюция больших таксонов складывается из многих этапов видообразования) и методов изучения (использование данных палеонтологии, сравнительной морфологии, эмбриологии и др.) позволяет выявить закономерности, ускользающие при изучении микроэволюции. Важнейшими задачами концепции макроэволюции являются анализ соотношения индивидуального и исторического развития организмов, анализ закономерностей филогенеза и главных направлений эволюционного процесса. В 1866 немецкий естествоиспытатель Э. Геккель сформулировал биогенетический закон, согласно которому в онтогенезе кратко повторяются этапы филогенеза данной систематической группы. Мутации проявляются в фенотипе взрослого организма в результате того, что они изменяют процессы его онтогенеза. Поэтому естественный отбор взрослых особей приводит к эволюции процессов онтогенеза - взаимозависимостей развивающихся органов, названных И. И. Шмальгаузеном онтогенетическими корреляциями. Перестройка системы онтогенетических корреляций под действием движущего отбора приводит к возникновению изменений - филэмбриогенезов, посредством которых в ходе филогенеза формируются новые признаки организмов. В том случае, если изменение происходит на конечной стадии развития органа, осуществляется дальнейшая эволюция органов предков (Анаболия); бывают также отклонения онтогенеза на промежуточных стадиях, что приводит к перестройке органов (Девиация); изменение закладки и развития ранних зачатков может приводить к возникновению органов, отсутствовавших у предков (Архаллаксис). Однако эволюция онтогенетических корреляций под действием стабилизирующего отбора приводит к сохранению лишь тех корреляций, которые наиболее надёжно обеспечивают процессы онтогенеза. Эти корреляции и являются рекапитуляциями - повторениями в онтогенезе потомков филогенетических состояний предков; благодаря им обеспечивается биогенетический закон. Направление филогенеза каждой систематической группы определяется конкретным соотношением среды, в которой протекает эволюция данного таксона, и его организации. Дивергенция (расхождение признаков) двух или нескольких таксонов, возникающих от общего предка, обусловлена различиями в условиях среды; она начинается на популяционном уровне, обусловливает увеличение числа видов и продолжается на уровне надвидовых таксонов. Именно дивергентной эволюцией (обусловлено таксономическое разнообразие живых существ. Реже встречается параллельная эволюция. Она возникает в тех случаях, когда первично дивергировавшие таксоны остаются в сходных условиях среды и вырабатывают на основе сходной, унаследованной от общего предка, организации сходные приспособления. Конвергенция (схождение признаков) происходит в тех случаях, когда неродственные таксоны приспосабливаются к одинаковым условиям. Биологический прогресс может достигаться путём общего повышения уровня организации, обусловливающего адаптацию организмов к условиям среды, более широким и разнообразным, чем те, в которых обитали их предки. Такие изменения - ароморфозы - возникают редко и обязательно сменяются алломорфозами - дивергенцией и приспособлением к более частным условиям в процессе освоения новой среды обитания. Выработка узких адаптации в филогенезе группы приводит к специализации.

Выделенные Шмальгаузеном 4 основных типа специализации - теломорфоз, гипоморфоз, гиперморфоз и катаморфоз - различаются по характеру приспособлений, но все приводят к замедлению темпов эволюции и в силу утраты органами специализированных животных мультифункциональности - к снижению эволюционной пластичности. При сохранении стабильных условий среды специализированные виды могут существовать неограниченно долго. Так возникают «живые ископаемые», например многие роды моллюсков и плеченогих, существующие с кембрия до наших дней. При резких изменениях условий жизни специализированные виды вымирают, тогда как более пластичные успевают адаптироваться к этим изменениям.

Эволюционное учение и главным образом его теоретическое ядро - эволюционная теория - служат как важным естественнонаучным обоснованием диалектического материализма, так и одной из методологических основ современной биологии.

Злыгостев А. С.


Источники:

  1. Большая Советская Энциклопедия

Эволюционное учение - это наука о причинах, движущих силах, механизмах и общих закономерностях исторического развития живого мира. Эволюцией в биологии называют непрерывное направленное развитие живого мира, сопровождающееся изменением строения и уровней организации разных групп организмов, позволяющее им более эффективно приспосабливаться и существовать в самых различных условиях обитания.

Эволюционное учение является теоретической базой биологии, так как оно объясняет основные особенности, закономерности и пути развития органического мира, позволяет понять причину единства и огромного многообразия органического мира, выяснять исторические связи между разными формами жизни и предвидеть их развитие в будущем. Эволюционное учение обобщает данные многих биологических наук, позволяет понять механизмы и направления изменчивости живой материи и использовать эти знания в практике селекционных работ.

Эволюционное учение возникло не сразу. Оно сложилось как результат длительной борьбы двух принципиально противоположных систем взглядов на жизнь и ее происхождение - идей Божественного сотворения мира и представлений о самозарождении и саморазвитии жизни. На основе этих воззрений в науке сложились два направления - креационизм, развивающий идеи сотворения мира Богом или Высшим разумом, второе - эволюционизм, допускающий возможность самозарождения и саморазвития органического мира. Существовали также представления о вечности жизни в природе.

Уже в древности эти идеи активно обсуждались, и в их развитие внесли большой вклад такие выдающиеся мыслители своего

Додарвиновский период развития эволюционных идей в биологии времени, как Фалес Милетский, Анаксимандр, Анаксимен, Гераклит, Эмпедокл, Демокрит, Платон, Аристотель и многие другие.

В Средние века господствовали в основном идеи креационизма и неизменности мира.

Наиболее крупными учеными додарвиновского периода развития биологии были К. Линней и Ж. Б. Ламарк.

Карл Линней (1707-1778) - выдающийся шведский ученый. Именно он сделал попытку обобщить имевшиеся в то время данные о многообразии органического мира и создать его научную классификацию, изложив свои взгляды по этим вопросам в «Системе природы» (1735). Он является создателем систематики и номенклатуры - наук о принципах классификации и правилах их наименования. Основной таксономической категорией у растений и животных К. Линней считал вид, определяя его как множество сходных особей, воспроизводящих себе подобных. Виды он объединял в роды. В своей системе он выделял пять таксономических категорий разного уровня: класс, отряд, род, вид, разновидность. Для названия видов К. Линней использовал бинарную номенклатуру, то есть двойное наименование - с указанием названий рода и вида (например, мухомор красный, олень благородный и т. п., где первое слово - название рода, а второе - вида). Описания видов и их названия он сделал на латинском языке, принятом тогда в науке. Это намного облегчило взаимное понимание между учеными разных стран, так как в разных языках один и тот же вид может называться совершенно по-разному. Поэтому до сих пор научные названия растений, грибов или любых других организмов принято писать на латинском языке, понятном специалистам разных стран. Всего К. Линней составил описания около десяти тысяч видов растений и животных, объединив их в 30 классов (24 класса растений и 6 классов животных). Однако система К. Линнея была искусственной, основанной на сходстве только внешних признаков. Так, к классу червей он относил кишечнополостных, губок, иглокожих и даже круглоротых, которые сейчас относятся к совершенно разным типам животных. Растения он разделял на классы по наличию или отсутствию цветка, форме цветка и по числу тычинок и пестиков в нем. Но вместе с тем он совершенно правильно отнес человека к отряду приматов. Это было революционным шагом для того времени. Не случайно труд К. Линнея долгое время был запрещен Ватиканом. К. Линней считал виды неизменными, существующими в том состоянии, как их создал Бог. Но он отмечал, что разновидности могут со временем изменяться. Большой заслугой К. Линнея является то, что его систематика фактически отражала результаты эволюции - многообразие организмов от простых форм к более сложным, а таксономические категории впервые определили иерархию и соподчиненность разных групп организмов - от видов до классов.

Очень крупной фигурой в биологии является Жан-Батист Ламарк (1744-1829) - французский ученый, создавший первое целостное эволюционное учение, основы которого он изложил в своем труде «Философия зоологии» (1809). В нем он впервые доказал, что всем видам присуща изменчивость. Основными причинами изменчивости Ж. Б. Ламарк считал влияние внешней среды и стремление живых организмов к совершенству, заложенное в них Богом. Таким образом, по Ламарку, процесс эволюции как бы намечен самим Творцом. Главным механизмом изменчивости видов Ламарк считал упражнение или неупражнение органов. Под влиянием меняющихся условий среды обитания животным приходится менять свои привычки и способы добывания пищи. Например, у жирафа, которому приходится тянуться вверх за листьями деревьев, со временем вытянулась шея (упражнение органа), а у крота, обитающего под землей, произошла потеря зрения (неупражнение органа). Ламарк дал более подробную по сравнению с Линнеем классификацию животных, распределив их по 14 классам. Он отделил позвоночных животных от беспозвоночных. Выделенные им 14 классов животных были разделены по степени усложнения строения на 6 градаций (ступеней усложнения). Так, к 1-ой градации он отнес и полипов, ко 2-ой - лучистых животных и червей, к 3-й - насекомых и паукообразных, к 4-ой - ракообразных, кольчатых червей, усоногих и моллюсков, к 5-ой - рыб и рептилий и к 6-ой - птиц, млекопитающих и человека. Он совершенно справедливо отмечал происхождение высших форм животных от низших и считал, что человек произошел от обезьян. Заслугой Ламарка является также введение в науку терминов «биология» и «биосфера», которые получили впоследствии широкое распространение.

К середине XIX века наука созрела для создания эволюционного учения в биологии. Причин этому было много. Назовем только некоторые из них.

1. Завершение эпохи Великих географических открытий (XV-ХVIII вв.) показало человечеству все многообразие мира.

Ранее, во времена древнего мира, античности, раннего и среднего Средневековья, люди жили в своих городах и селениях, и круг их путешествий ограничивался лишь небольшим набором сопредельных регионов. Это создавало иллюзию об однообразии и стабильности окружающего мира (см. статью: ). Эпоха кругосветных путешествий обнаружила полную несостоятельность этих представлений. Появились многочисленные описания новых земель, их природы и населяющих их племен, растений и животных, которые разрушали привычные воззрения об однородности и неизменности мира.

2. Активная колонизация вновь открытых земель европейцами потребовала составления подробных описаний природы, климата и ресурсов этих районов, что существенно расширяло знания людей о природе . В этой работе принимали участие уже не одиночки-путешественники, а большие массы людей, что способствовало быстрому распространению новых знаний среди широких слоев населения стран Европы.

3. Развитие капитализма в странах Западной Европы ускорило прогресс в технике и научных изысканиях, необходимых для развития промышленности.

4. Интенсивное развитие науки, в свою очередь, ускорило процесс создания эволюционного учения. В это время активно развиваются многие науки о природе, свидетельствующие о ее целостности и определенном развитии: геология, показавшая единство строения минералов и горных пород в разных регионах Земли; палеонтология, накопившая большое количество окаменелостей, давно вымерших растений и животных, что свидетельствовало о древности жизни и смены одних ее форм другими. Кроме того, были обнаружены ископаемые организмы, составляющие явно переходные звенья между ныне существующими и вымершими формами. Эти факты требовали своего объяснения. Успехи сравнительной анатомии выявили общность строения многих групп растений и животных и показывали существование переходных форм между отдельными группами организмов. Цитология выявила общий характер клеточного строения растений и животных. Эмбриология нашла сходство развития зародышей у разных групп животных. Значительные успехи были достигнуты в области селекции растений и животных, свидетельствующие о возможности искусственного изменения их форм и продуктивности.

Все это вместе взятое и подготовило базу и условия разработки эволюционного учения.

Создание эволюционной теории Ч. Дарвина и А. Уоллеса

Основы современной теории эволюции были созданы выдающимся английским ученым-энциклопедистом Чарлзом Дарвином (1809-1882). Независимо от него в это же время работал и пришел к очень близким выводам соотечественник Ч. Дарвина - зоолог Альфред Уоллес (1823-1913).

Научные интересы Ч. Дарвина как натуралиста были чрезвычайно разнообразны: он занимался ботаникой, зоологией, геологией, палеонтологией, теологией, интересовался вопросами селекции и т. п. Большую роль в жизни Ч. Дарвина и формировании его научных идей сыграло кругосветное путешествие в составе экспедиции на корабле «Бигл» в 1831-1836 гг. Там он смог досконально изучить специфику фауны Галапагосских островов, Южной Америки и ряда других районов мира. Уже в этот период у Ч. Дарвина начинают формироваться основные эволюционные идеи и он приближается к открытию принципа дивергенции - расхождения признаков у потомков общего предка как механизма формо- и видообразования. Большую роль в формировании эволюционистских идей Ч. Дарвина сыграло его участие в палеонтологических раскопках в Уругвае, где он познакомился с некоторыми вымершими формами гигантских ленивцев, броненосцев и ряда беспозвоночных. Вернувшись из экспедиции, Ч. Дарвин пишет ряд монографий и выступает с докладами, принесшими ему признание научной общественности и широкую известность.

Анализируя темпы размножения и реальную численность популяций в природе, Ч. Дарвин задался вопросом о причинах вымирания одних форм и выживания других. Для решения этой проблемы он привлекает идеи Томаса Мальтуса (1766-1834) о борьбе за существование в человеческом обществе, изложенные последним в труде «Опыт в законе народонаселения».

Так у Ч. Дарвина родились собственные идеи о роли борьбы за существование в процессах выживания видов в природе и значении естественного отбора как важнейшего фактора, определяющего направление эволюции. Основными механизмами борьбы за существование Ч. Дарвин считал внутри- и межвидовую конкуренцию, а избирательная гибель рассматривалась им как основа естественного отбора. Эти процессы могут ускоряться при пространственной изоляции популяций. Ч. Дарвин совершенно правильно отмечал, что эволюционируют не отдельные особи, а виды и внутривидовые популяции, то есть эволюционный процесс происходит на надорганизменном уровне.

Особую роль в эволюции Ч. Дарвин отводил наследственной изменчивости организмов в популяциях и половому воспроизводству организмов как одному из главных факторов естественного отбора.

Процесс видообразования Ч. Дарвин считал постепенным, он проводил определенные параллели меду естественным и искусственным отбором, приводящим к формированию подвидов, видов и пород или сортов животных и растений. Он подчеркивал также важное значение других наук (палеонтологии, биогеографии, эмбриологии) в доказательствах эволюции. Эти труды были оценены высшей наградой Королевского научного общества. Квинтэссенцией этих сочинений стал труд «Происхождение видов путем естественного отбора или сохранение благоприятствуемых рас (форм, пород) в борьбе за жизнь», изданный Ч. Дарвином в 1859 г. и не потерявший своего значения и в наше время.

Очень похожие взгляды на эволюцию живого мира и ее механизмы представил и А. Уоллес. Даже многие термины в трудах обоих ученых совпали.

А. Уоллес обратился к Ч. Дарвину, как известному эволюционисту, с просьбой просмотреть и прокомментировать его труд. Доклады обоих ученых на эту тему были опубликованы в одном томе Трудов Линнеевского общества, и сам А. Уоллес, и научная общественность единодушно признали приоретет Ч. Дарвина в этих вопросах. Само эволюционное учение долгое время носило имя его основателя - дарвинизм.

Важнейшей заслугой Ч. Дарвина и А. Уоллеса стало то, что они определили главный фактор эволюции - естественный отбор - и тем самым обнаружили причины протекания эволюции живого мира.

Вид как этап эволюционного процесса

Основной эволюционной единицей является вид. Именно вид, по мнению Ч. Дарвина, является центральным звеном эволюционного процесса. Само представление о виде было сформулировано еще в античные времена Аристотелем, который рассматривал вид как совокупность сходных особей. Примерно этих же представлений о виде придерживался и К. Линней, рассматривая его как самостоятельную, дискретную и неизменную биологическую и систематическую структуру. В настоящее время вид рассматривается как реально существующая в природе группа особей. Остальные систематические категории являются в известной мере производными вида, выделяемыми учеными на основании тех или иных признаков (роды, семейства и т. п.).

В современной биологии видом называют совокупность популяций особей, обладающих наследственным сходством морфологических, физиологических и биохимических признаков, свободно скрещивающихся и дающих плодовитое потомство, приспособленных к определенным условиям жизни и занимающих определенную территорию - ареал. Вид - это основная структурная и таксономическая единица в системе живой природы и качественный этап эволюции организмов.

Критерии вида

Каждый вид характеризуется многими признаками, которые носят название критериев вида.

1. Морфологические критерии включают сходство внешнего и внутреннего (анатомического) строения организмов. Морфологические признаки очень изменчивы. Например, деревья, растущие в густом лесу и на открытых пространствах, выглядят по-разному. Иногда в пределах одного вида могут быть особи сильно различающиеся по морфологии. Такое явление носит название полиморфизма. Это может быть связано с наличием разных стадий развития растений и животных, чередованием полового и бесполого поколений и т. п. Так, личиночные и взрослые стадии многих насекомых совершенно не похожи друг на друга. Различаются морфологически стадии медуз и полипов у кишечнополостных, гаметофит и спорофит у папоротникообразных и т. п.

Если особи различаются двумя морфологическими типами, то их называют диморфными (например, половой диморфизм).

Вместе с тем бывают случаи высокого морфологического сходства разных видов. Такие виды носят название видов-двойников.

Не зная всего этого, каждый определенный морфологический тип можно принять за самостоятельный вид или, напротив, разные, но морфологически похожие виды можно неверно отнести к одному виду. Таким образом, морфологический критерий не может быть единственным при определении вида.

2. Генетический критерий вида подразумевает существование вида как целостной генетической системы, составляющей генофонд вида (совокупность генотипов всех особей, относящихся к этому виду).

Каждому виду свойствен определенный набор числа хромосом (у человека, например, диплоидный набор хромосом 2п равен 46), определенная форма, структура, размеры и характер окраски хромосом. У разных видов число хромосом неодинаково, и по этому критерию можно легко различать очень близкие по морфологии виды (виды-двойники). Так были разделены очень похожие друг на друга виды полевок обыкновенных, имеющие 46 и 54 хромосомы, крыс черных (с диплоидными наборами хромосом 38 и 42). Разное число хромосом у разных видов позволяет особям свободно скрещиваться с представителями своего вида, образуя жизнеспособное и плодовитое потомство, но, как правило, оно обеспечивает частичную или полную генетическую изоляцию при скрещиваниях с особями других видов - вызывая гибель гамет, зигот, эмбрионов или же приводя к образованию нежизнеспособного или бесплодного потомства (вспомните, например, мула - бесплодного гибрида осла и лошади, лошака - бесплодного гибрида коня и ослицы).

В настоящее время генетические критерии вида дополнены молекулярными анализами ДНК и РНК (картирование генов, определение последовательности расположения нуклеотидов в молекулах нуклеиновых кислот и т. п.). Это позволяет не только разделять близкие виды, но и определять степень родственной близости или отдаленности разных видов, облегчает проведение филогенетического анализа определенных групп видов, позволяющего выявить родственные связи между разными видами и группами организмов и последовательность их образования.

Однако, несмотря на большие возможности генетических анализов, они также не могут быть абсолютными критериями при определении видов. Например, одинаковые по числу наборы хромосом могут быть у представителей совершенно разных групп растений, грибов или животных. В природе также известны случаи межвидовых скрещиваний с получением жизнеспособных и плодовитых потомков (например, у некоторых видов канареек, зябликов, ив, тополей и др.).

3. Физиологический критерий включает единство всех процессов жизнедеятельности у всех особей одного вида. Это одинаковые способы питания, обмена веществ, размножения и т.п. Это сходство биологических ритмов особей одного вида (периоды активности и отдыха, зимние или летние спячки). Данные признаки также являются важной характеристикой вида, но не единственной.

4. К биохимическим критериям вида можно отнести, например, сходство строения белков, химического состава клеток и тканей, совокупности всех химических процессов, происходящих у всех представителей вида и т.п. К этой же категории признаков можно отнести способность некоторых видов организмов образовывать биологически активные соединения (такие, как антибиотики, токсины, алкалоиды и др.) и любые другие органические вещества (органические кислоты, аминокислоты, спирты, пигменты, углеводы, углеводороды и др.), что широко используется человеком в различных биологических технологиях. Это тоже очень важные признаки вида, дополняющие другие его характеристики.

5. Экологический критерий вида включает характеристику его экологической ниши. Это очень важная характеристика вида, отражающая его место и роль в биоценозах и в биогеохимических круговоротах веществ в природе. Она включает характеристику мест обитания вида, многообразие его биотических связей (место и роль в цепях питания, наличие симбионтов или врагов и т. п.), зависимость от природных факторов (температуры, влажности, освещения, кислотности и солевого состава среды и пр.), периоды и ритмы активности, участие в превращениях определенных или веществ (окисление или восстановление , серы, азота, разложение белков, целлюлозы, лигнина или иных органических соединений и т. п.). То есть - это полная характеристика того, где вид встречается в природе, когда он активен, в чем и каким образом проявляется его жизнедеятельность. Но и данный критерий не всегда достаточен для определения вида.

6. Географический критерий включает характеристику и величину ареала, занимаемого видом на планете. На этой территории вид встречается и проходит полный цикл развития. Ареал называется первичным, если образование вида произошло именно на этой территории, и вторичным, если территории были заняты видом вследствие случайных миграций, природных катастроф, перемещения человеком и т. п. Ареал может быть сплошным, если вид встречается на всем его пространстве в подходящих местообитаниях. Если ареал распадается на ряд разобщенных и удаленных территорий, между которыми уже невозможны миграции или обмен спорами и семенами, то он называется прерывистым. Выделяют также реликтовые ареалы, занимаемые древними, случайно выжившими видами.

Виды, которые занимают обширные пространства земли и встречаются в разных эколого-географических зонах, называются космополитами, а занимающие лишь небольшие (локальные) территории и не встречающиеся в других местах, получили название эндемиков.

Для видов с обширными ареалами характерна определенная географическая изменчивость, получившая название клинальной изменчивости. У последних видов возможно также существование географических форм и рас и определенных экотипов, приспособленных к конкретным местообитаниям в пределах ареала.

Как уже отмечалось выше, ни один из названных критериев не является достаточным для характеристики видов и последний можно характеризовать только по комплексу признаков.

Популяции

Вид состоит из популяций. Популяцией называется совокупность особей одного вида, обладающих общим генофондом, заселяющих определенную территорию (часть ареала вида) и размножающуюся путем свободного скрещивания. Популяции, в свою очередь, состоят из более мелких групп особей - семей, демов, парцелл и т. п., связанных друг с другом единством занимаемой территории и возможностью свободного скрещивания.

Связь родителей с потомством обеспечивает непрерывность популяции во времени (наличие нескольких поколений особей в популяции), а свободное половое размножение поддерживает генетическое единство популяции в пространстве.

Популяции являются структурной единицей вида и элементарной единицей эволюции.

Популяции - это динамичные группы, они могут объединяться друг с другом, распадаться на дочерние популяции, мигрировать, менять свою численность в зависимости от условий существования, приспосабливаться к определенным условиям жизни, погибать в неблагоприятных условиях.

В пределах ареала вида популяции распределены очень неравномерно. Их будет больше и они будут более многочисленны в благоприятных условиях существования. Напротив, в неблагоприятных условиях и на границах ареала они будут редки и малочисленны. Иногда популяции имеют островной или локальный характер распределения, например, березовые колки на Урале и в Сибири или пойменные рощи и леса в степной зоне.

Число особей, приходящихся на определенную единицу площади или объем среды, носит название плотности популяции. Плотность популяций очень сильно меняется в разные сезоны и годы. Наиболее резко она меняется у мелких организмов (например, у комаров, водорослей, вызывающих цветение водоемов, и т. п.). У крупных организмов численность и плотность популяций более стабильны (например, у древесных растений).

Каждая популяция характеризуется определенной структурой, которая зависит от соотношения в ней особей разного пола (половая структура), возраста (возрастная структура), размеров, разных генотипов (генетическая структура) и т. п. Возрастная структура популяций может быть очень сложной. Наиболее четко это можно наблюдать у древесных растений, где отдельные особи могут существовать многие десятки и даже сотни лет, принимая активное участие в процессах перекрестного опыления. Таким образом, складываются популяции, состоящие из множества родственных друг другу поколений. В других популяциях возрастная структура может быть очень простой, например, у однолетних растений, которые представляют собой одновозрастные группы.

Популяции постоянно изменяются во времени и в пространстве, и именно эти изменения и представляют собой элементарные эволюционные процессы. Вот почему популяции называют элементарной эволюционирующей структурой.

Механизмы и закономерности изменчивости популяций в природе и их генетическую основу подробно изучали крупнейшие российские генетики и эволюционисты А. С. Серебровский (1892-1948) и С. С. Четвериков (1880-1959). Их трудами и работами их последователей созданы основы популяционной генетики.

Основные типы эволюционного процесса

Дивергенция

Дивергенцией Ч. Дарвин называл расхождение признаков в процессе эволюции, приводящее к появлению новых форм или таксонов организмов, происходящих от общего предка. Дивергенция приводит также к преобразованию одних органов тела в другие в связи с выполнением новых функций. Например, после выхода позвоночных животных на сушу их передние конечности претерпели значительные изменения в зависимости от освоения тех или иных типов местообитаний и образа жизни (бегательные у ящериц, волков, кошек, оленей или других, роющие у кротов, крылья у птиц, крылообразные у летучих мышей, хватательные у обезьян, рука у человека, ласты при вторичном освоении водной среды ихтиозаврами, моржами или китообразными и т. д.). Такие органы, имеющие общее происхождение, но выполняющие разные функции, получили название гомологичных. Гомологичными органами являются листья растений, усики гороха, колючки кактусов, шипы барбариса и др.

Конвергенция

Конвергенцией называется независимое возникновение сходных признаков у организмов, имеющих различное происхождение (не родственных друг другу), или у органов, имеющих различное происхождение, но выполняющих сходные функции. Чаще всего конвергенция возникает при заселении сходных типов местообитаний. Например, конвергентное сходство отмечается у крыльев бабочек и рукокрылых, роющих конечностей кротов и медведок, жабр рыб и ракообразных, толчковых ног зайцеобразных и саранчовых и т. п. Но иногда конвергентное сходство возникает под влиянием сходства выполняемых функций, например, удивительная похожесть строения глаз млекопитающих и головоногих моллюсков. Но в любом случае эти органы формируются из разных частей эмбрионов этих животных.

Параллелизм

Параллелизм - это тип эволюции, при котором конвергентное сходство возникает на основе гомологичных органов. Гомологичные органы или морфологические формы, имевшие когда-то общее происхождение, но потом изменившиеся и переставшие быть похожими друг на друга, в новых условиях снова приобретают черты большого сходства. Это вторичное сходство бывших родственных форм. Например, рыбообразная обтекаемая форма вторично возникает при переходе животных от наземного образа жизни к водному. Вспомните похожесть строения акул (первичноводные животные) и ихтиозавров и китообразных (вторично-водные). У кошачьих саблезубость возникала в разное время у разных видов. Причина параллелизма - одинаковое направление естественного отбора и определенная генетическая близость между такими группами организмов.

Филетическая эволюция

Филетическая эволюция, или филогенез, - это такой тип эволюционного процесса, при котором происходит постепенное преобразование одних таксонов в другие без образования боковых ветвей. При этом образуется непрерывный ряд популяций (таксонов), в котором каждый таксон является потомком предыдущего и предком последующего, не имея сестринских таксонов. Этот тип был описан американским исследователем Дж. Симпсоном в 1944 г.

Изучая закономерности эволюции растений, выдающийся российский (советский) генетик Н. И. Вавилов открыл интересные явления, названные им законом гомологических рядов. Этот закон непосредственно вытекает из анализа соотношений и взаимосвязей между разными типами эволюционного процесса и показывает большое сходство эволюционных изменений у родственных групп организмов. Причиной этого является сходство мутаций гомологичных генов в генофондах родственных видов. Поэтому, зная спектр изменчивости одного вида (или рода), можно с большой вероятностью предсказать многообразие форм другого вида (или рода). При этом целые семейства растений могут характеризоваться определенным циклом изменчивости, обнаруживаемой у всех его родов и видов. Так, зная формы изменчивости ячменя, Н. И. Вавилов очень точно предсказал и впоследствии обнаружил сходные формы у пшеницы.

Правила эволюции

Подводя итог изложению процессов микро- и макроэволюции, можно привести несколько общих правил, которым эти процессы подчиняются.

1. Непрерывность и неограниченность эволюции - эволюция возникла с момента образования жизни и будет непрерывно продолжаться, пока существует жизнь.

3. Правило происхождения специализированных групп от неспециализированных. Только неспециализированные, широко приспособленные группы могут дать толчок эволюции и вызвать образование специализированных групп.

4. Правило прогрессирующей специализации групп. Если группа организмов стала на путь специализации, то последняя только углубляется и обратного возврата не происходит (правило Депере).

5. Правило необратимости эволюции. Все эволюционные процессы необратимы, и все новые эволюционные процессы происходят на новой генетической основе (правило Долло). Например, после выхода на сушу ряд животных вернулся к водному образу жизни, сохранив свои эволюционные приобретения. В частности, и ихтиозавры, и китообразные являются вторичноводными животными, но они не превратились в рыб, а остались пресмыкающимися или млекопитающими, сохранив все особенности своих классов.

6. Правило адаптивной радиации. Эволюционное развитие происходит в разных направлениях, способствуя заселению разных сред обитания.

Филогения и систематика как отражение эволюционных процессов

Изучение микро- и макроэволюционных процессов позволяет установить филогенетические (то есть родственные) связи между разными группами живых организмов и определить время появления этих форм.

Филогенезом называют процесс исторического развития группы или конкретного вида. Филогенезом можно также назвать длительный непрерывный ряд множества онтогенезов, отражающий основные эволюционные перестройки. Изучение филогенеза позволяет установить родственные связи между разными таксонами и выяснить механизмы и время эволюционной перестройки определенных групп живых организмов.

Выделяют следующие основные формы филогенеза:

1) монофилия - происхождение разных видов от одного общего предка;

2) парафилия - одновременное образование видов путем синхронной дивергенции предковой формы на два или большее число новых видов;

3) полифилия - происхождение группы видов организмов от разных предков путем гибридизации и/или конвергенции.

Механизмы и способы филогенетических изменений

1. Усиление (интенсификация) функций тела или его органа, например увеличение объема мозга или легких, приведшие к интенсификации их активности.

2. Уменьшение числа функций. Примером может быть преобразование пятипалой конечности у парно- и непарнокопытных животных.

3. Расширение числа функций. Например, у кактусов стебель помимо основных своих функций выполняет функцию запасания .

4. Смена функций. Например, преобразование ходильных конечностей в ласты у вторичноводных млекопитающих (моржей и др.).

5. Замена одного органа другим (субституция). Например, у позвоночных животных хорда заменяется на костный позвоночник.

6. Полимеризация органов и структур (то есть повышение числа однородных структур). Например, эволюция одноклеточных организмов в колониальные и далее в многоклеточные формы.

7. Олигомеризация органов и структур. Это противоположный полимеризации процесс. Например, образование прочного таза путем сращивания нескольких костей.

Систематика как отражение эволюционных процессов

Систематика - наука о положении организмов в общей системе живого мира. Существует множество систем органического мира. Среди них выделяют искусственные системы, учитывающие лишь чисто внешнее сходство между организмами (примером может быть система К. Линнея), и естественные, или филогенетические системы.

Знание систематики необходимо не только с точки зрения определения вида организма (хотя уже это очень важно), но и для понимания его места (а часто и роли) в живом мире, для представления о его происхождении и родственных связях с другими организмами.

Современная систематика основана на тщательном изучении филогенетических связей между разными группами организмов и, по сути дела, во многом отражает основные этапы развития органического мира от простых форм к сложным. Именно так изложен в школьных учебниках материал по систематике растений и животных.

Составной частью систематики является таксономия - наука о принципах классификации живых существ.

Основной таксономической единицей является вид, образующийся в процессе микроэволюции. Родственные виды объединяют в роды, а близкие роды - в семейства. Семейства, имеющие какие-то общие признаки, группируют в порядки (в ботанике) или в отряды (в зоологии). Порядки и отряды объединяют в классы по принципу сходства ряда крупных признаков - одна или две семядоли у цветковых растений, особенности строения и развития у животных (рептилии, птицы, млекопитающие и т. п.).

Сходство некоторых принципиальных признаков позволяет объединять классы в типы (у животных) или отделы (у растений). Пример - цветковые растения (имеют цветок и защищенные плодом семена), хордовые животные (наличие хорды), членистоногие (членистые конечности) и т.п. Причем типы, классы, а часто и порядки могут объединять не только родственные, но и конвергентно сходные формы.

Типы или отделы объединяют в царства по принципу сходства строения и выполняемых функций больших групп организмов. Например, фотосинтезирующие организмы, выделяющие при фотосинтезе кислород, относят к растениям. Царства, как правило, имеют полифилетическое происхождение.

Царства можно объединять в надцарства и империи. В настоящее время выделяют следующие формы жизни.

Неклеточные формы жизни - вирусы.

Клеточные формы жизни:

1) надцарство (или империя) Прокариоты (включает царства Архебактерий и Истинных бактерий); 2) надцарство (или империя) Эукариоты (царства , Животных, Растений и Грибов). Простейших часто объединяют с животными.

Таким образом, крупные систематические категории (царства, типы (отделы), классы, отряды (порядки) являются по сути дела отражением главнейших направлений эволюционного процесса.

Понравилась статья? Поделиться с друзьями: