Гетероциклические соединения классификация. Строение и номенклатура

Др. элементов (гетероатомов). Наиб. значение имеют Т.е., в цикл к-рых входят N, О, S. К ним относятся мн, прир. ; они входят в виде структурных фрагментов в нуклеиновых к-т, и др. Гетероциклические соединения-самый многочисленный класс орг. соед., включающий ок. 2 / 3 всех известных прир. и синтетич. орг. .

Номенклатура. Согласно правилам номенклатуры , для важнейших гетероциклических соединений сохраняются их тривиальные назв., напр. (ф-ла I), (II), (III). Систематич. назв. моноциклич. Т.е., содержащих в цикле от 3 до 10 , образуют путем сочетания приставок, обозначающих гетероатомы (N-аза, О-окса, S-тиа, Р-фосфа и т. п.), с корнями, к-рые для основных гетероциклических соединений приведены в таблице. Степень ненасыщ. гетероцикла отражается в назв. с помощью корней или приставок "дигидро" (присоединены два ), "тетрагидро", "пергидро" и т.д. Примеры систематич. назв.: (IV), тиирен (V), тает (VI), 1,3-диоксолан (VII), пергидропиримидин (VIII).

Для гетероциклических соединений с 11 и более членами в цикле, мостиковых и нек-рых конденсиров. систем используется "а"-номенклатура, по правилам к-рой первая составная часть назв. обозначает гетероатом, а вторая-назв. , к-рое м. б. образовано, если считать, что в ф-ле гетероциклического соединения все гетероатомы заменены на С, группы СН или СН 2 , напр. 1,5-диазабицикло (Xill). Для названия гетероциклических соединений этого типа используют также традиционные назв., напр. пентадеканолид (XIV), 18-краун-6-эфир (XV).

КОРНИ, ИСПОЛЬЗУЕМЫЕ ПРИ СОСТАВЛЕНИИ НАЗВАНИЙ ГЕТЕРОЦИКЛИЧЕСКИХ СОЕДИНЕНИЙ ПО НОМЕНКЛАТУРЕ

Химические свойства. Для 3- и 4-членных гетероциклических соединений характерна легкость раскрытия напряженного цикла. 5- и 6-членные ненасыщ. гетероциклы (наиб. многочисл. тип гетероциклических соединений), замкнутая сопряженная система связей к-рых включает (4м + 2) , обладают ароматич. характером (правило Хюккеля) и наз. гетероароматич. соединениями. Для них, как и для бензоидных ароматич. соед., Наиб. характерны р-ции замещения. При этом гетероатом играет роль "внутренней" ф-ции, определяющей ориентацию, а также активирующее или дезактивирующее влияние на кольцо к действию разл. .

Гетероароматич. соед. подразделяют на я-избыточные идефицитные. К первым относят 5-членные гетероциклические соединения с одним гетероатомом, в к-рых секстет делокализован между пятью цикла, что обусловливает их повыш. по отношению к электроф. агентам. Кдефицитным относят 6-членные гетероциклы с шестью , к-рые распределяются, как и в случае , между шестью кольца, но один или неск. из них - гетероатомы с большей, чем у , . Такие соед. напоминают по реакц. способности производные

Органические соединения, содержащие в своих молекулах циклы, в состав которых могут входить неуглеродные атомы . Гетероциклические соединения классифицируют по количеству атомов в цикле и по типу гетероатома.

Шестичленные гетероциклы.

Пиридин C 5 H 5 N :

Строение гетероциклов.

Пиридин напоминает бензол: все атомы углерода и атом азота находится в sp 2 - гибридизации . Шесть электронов находятся на негибридных орбиталях и образуют π -электронную ароматическую систему. Из 3х гибридных орбиталей атома азота две вступают в образование сигма-связей С-N , а на третьей находится неподеленная пара:

Пиридин - бесцветная жидкость, немного легче воды , с неприяным запахом, с водой смешивается в любых пропорциях.

Получение гетероциклов.

Пиридин выделяют из каменноугольной смолы. В лабораторных условиях его можно синтезировать из синильной кислоты и ацетилена:

1. Основные свойства гетероциклов. Пиридин - слабое основание, его водных раствор окрашивается в синий цвет:

При реакции с сильными кислотами образуются соли пиридиния:

2. Ароматические свойства гетероциклов. Как и бензол пиридин вступает в реакции электрофильного замещения. Его активность в этих реакция ниже, чем у бензола из-за большой электроотрицательности атома азота. Нитрование проводят при 300 ºС с низким выходом:

Реакции нуклеофильного замещения. Атом азота оттягивает к себе электронную плотность ароматической системы и орто-, пара - положения «обеднены» электронами. Поэтому пиридин может реагировать с амидом натрия, образую смесь орто- и пара- аминопиридинов (реакция Чичибана ):


3. Гидрирование пиридина, в результате чего образуется пиперидин:

4. Гомологи пиридина подвергаются боковому окислению :

Пиримидин С 4 Н 4 N 2 .

Это шестичленный гетероцикл с 2-мя атомами азота:

Пиримидин менее активен в реакциях электрофильного замещения, и основные свойства его выражены хуже, чем и пиридина.

К пиримидиновым основаниям относят: урацил, тимин, цитозин:

Каждое из этих соединений может существовать в 2х формах - лактим-лактамная таутомерия.

Пятичленные циклы.

Ярким представителем является пиррол C 4 H 4 NH :

Строение гетероциклов.

Атомы азота и углерода находятся в sp 2 -гибридизации. 2 электрона на негибридной орбитали атома азота образуют π -элеткронную ароматическую систему:

Электронная пара входит в состав ароматической системы, поэтому пиррол практически лишен основных свойств.

Физические свойства гетероциклов.

Пиррол - бесцветная жидкость с запахом хлороформа. Он слабо растворим в воде , но растворим в органических растворителях.

Получение гетероциклов.

Конденсация ацетилена с аммиаком:

Аммонолиз - реакция Юрьева:

Химические свойства гетероциклов.

1. Сильные минеральные соли могут вытянуть электронную пару из ароматической системы, при этом ароматичность нарушается и пиррол превращается в неустойчивое соединение, которое сразу полимеризуется. Такая неустойчивость в кислой среде называется ацидофобностью.

2. Пиролл - очень слабая кислота, поэтому он может реагировать с калием:

3. Электрофильное замещение, сульфирование:

4. Гидрирование. В результате образуется пирролидин:

Интересными свойствами обладают имидазол и пиразол:

Они могут быть в таутомерной форме, т.к. NH - группа проявляет слабые кислотные свойства и способность отдавать протон невелика. Поэтому протон может переходить от одного атома к другому.

Ароматические гетероциклы представляют собой плоские циклические системы, содержащие вместо одного или нескольких атомов углерода, атомы кислорода, серы, азота. Ароматическими их называют вследствие того, что они удовлетворяют всем критериям, присущим любой ароматической системе, а именно:

· Система является циклической

· Цикл является плоским

· Имеется сопряжение по всему циклу, то есть возможность беспрепятственной делокализации любого из p-электронов по всей системе, благодаря наличию негибридизованных р-орбиталей

· Число делокализованных p- электронов, участвующих в сопряжении, отвечает, согласно правилу Хюккеля, проявлению ароматических свойств, а именно, равно 4n+2, где n- любое натуральное число, включая 0.

Среди ароматических гетероциклических соединений наиболее широко распространены и, соответственно, представляют наибольший интерес, пяти- и шести-членные гетероциклы, включающие в своем составе азот, серу и кислород, а также эти же системы, конденсированные с бензольным кольцом.

К пятичленным циклическим системам с одним гетероатомом относятся: пиррол, фуран и тиофен:

Из пятичленных гетероциклов с двумя гетероатомами наибольший практический интерес представляет имидазол.

К конденсированным с бензольным кольцом пятичленным гетероциклам относятся: 2,3- бензопиррол (индол, I), 3,4-бензопиррол (изоиндол, II), бензимидазол(III), бензофуран(IV) и 2,3-бензотиофен(V):

Наиболее важными из шестичленных гетероциклов являются: пиридин, пиримидин, хинолин (бензопиридин) и пурин.

Характерной особенностью пятичленных гетероциклических соединений является одновременное сочетание у них свойств как ароматического соединения, так и диена. Склонность к реакциям того и другого типов, однако, у них различна и связана с природой гетероатома. Так, “ароматические” свойства убывают в ряду: тиофен > пиррол > фуран. При этом их ароматические системы менее устойчивы, чем у бензола.

При нахождении гетероатома в кольце он взаимодействует с его электронной системой по двум направлениям. Как более электроотрицательные элементы, азот, сера и кислород, оттягивают электронную плотность с кольца по индуктивному эффекту, распространяющемуся по системе s - связей. Однако решающий вклад вносит мезомерный эффект, имеющий в каждом из этих случаев противоположное индуктивному эффекту направление. Таким образом, молекула пятичленного гетероциклического соединения становится поляризована, где “положительным” центром поляризации служит гетероатом. Электрические моменты диполей убывают в том же порядке, что и ароматические свойства. Наиболее электроотрицательный кислород имеет меньшую склонность к обобществлению своей пары электронов в ароматической системе, поэтому фуран обладает наименьшими ароматическими свойствами в ряду тиофен-пиррол-фуран.

Меньшая устойчивость ароматических систем у пятичленных гетероциклов объясняется двойственной природой np -электронной пары гетероатома, несоответствием валентных углов внутри цикла значению 120 градусов, характерному для sp2 -гибридизованного атома углерода, а также сильной поляризацией связи углерод-гетероатом. В результате наибольшая электронная плотность сосредоточена на ближайших к гетероатому атомах углерода (a - положения). На удаленных от него b - атомах углерода электронная плотность ниже. Все это предопределяет химические свойства соединений этого класса. Пятичленные гетероциклы в целом легче вступают в реакции электрофильного замещения, по сравнению с незамещенным бензолом. Замещение проходит по положению 2, если оно занято, замещаются атомы у третьего атома углерода

Совершенно иначе сказывается наличие гетероатома (азота) в шестичленном цикле пиридина. Неподеленная пара электронов азота не участвует в образовании ароматической системы, поэтому, в отличие от пиррола, пиридин проявляет выраженные основные свойства, а в отличие от бензола, его ароматическая система обеднена электронной плотностью вследствие проявления отрицательного индуктивного эффекта азота. Поэтому пиридин вступает в реакции электрофильного замещения в значительно более жестких условиях, чем незамещенный бензол, и в положения 3 относительно азота. Одновременно для пиридина характерны реакции нуклеофильного замещения, идущие с большей легкостью, нежели у незамещенного бензола, по тем же причинам.

Гетероциклические соединения чрезвычайно широко распространены в живой природе. Так, гетероциклы семейств пурина и пиримидина являются неотъемлемой частью нуклеиновых кислот, ответственных за хранение и передачу наследственной информации. Взаимодействие пуриновых и пиримидиновых производных по системе водородных связей лежит в основе процессов репликации, транскрипции и трансляции, основ функционирования любой живой клетки.

В технике и в промышленности гетероциклические соединения находят применение в качестве растворителей (тетрагидрофуран, пиридин), компонентов красителей, являются важными компонентами очень многих синтетических лекарственных средств, исходными соединениями при синтезах целого ряда важных химических соединений.

Химические свойства

Пятичленные ароматические гетероциклы и их производные

Как уже было отмечено, устойчивость ароматической системы убывает в ряду: Тиофен > Пиррол > Фуран .

Наименее ароматичный фуран, присоединяя в кислой среде протон по атому кислорода, образует диеновую систему, склонную к полимеризции и осмолению. Поэтому реакции электрофильного замещения в фуране (проходящие настолько же легко, как и в фенолах) проводят в нейтральных и щелочных средах. Так, фуран ацилируется ангидридами кислот в присутствии SnCl 4 , сульфируется пиридинсульфотриоксидом (бескислотный сульфирующий агент, пиридин связывает образующиеся при сульфировании протоны), нитруется ацетилнитратом:

Галогенирование фурана галогенами приводит к замещению всех четырех атомов водорода:

Моногалоидные производные получают косвенным путем:

Фуран легко вступает в реакцию Дильса-Альдера с диенофилами (малеиновый ангидрид):

При нагревании с разбавленной соляной кислотой цикл легко раскрывается:

Фурановый цикл приобретает устойчивость при наличии в нем электроноакцепторных заместителей: -NO 2 , -CHO, -COOH, -SO 2 OH, галогены.

Из производных фурана большое значение имеет применяемый в качестве растворителя тетрагидрофуран, получаемый при гидрировании фурана на никелевом катализаторе.

Тиофен по ароматичности наиболее близок к бензолу и для него характерны все реакции электрофильного замещения, протекающие с большей легкостью, чем у незамещенного бензола. Так, одним из способов очистки технического бензола от тиофена является обработка бензола серной кислотой на холоду:

Образующаяся при этом сульфокислота тиофена растворяется в серной кислоте. Тиофен устойчив в сильнокислых средах, но атом серы чувствителен к окислению, поэтому при нитровании тиофена не применяют азотную кислоту, а используют ацетилнитрат (см. фуран).

При галогенировании в тиофене замещаются только 2 атома водорода:

Бромтиофен легко образует магнийорганические соединения, из которых можно получить многие производные тиофена. При восстановлении тиофена получают тетрагидротиофен (тиофан) (I) , последний может быть окислен в сульфоксид (II) или сульфолан (III):

Интерес представляет конденсированное соединение тиофена- бензтиофен, производным которого является кубовый краситель красного цвета- тиоиндиго:

Вследствие наличия значительной доли положительного заряда у атома азота пиррол в большей степени проявляет кислотные свойства, нежели основные. Тем не менее, это все же очень слабая кислота, способная отдавать протон лишь при взаимодействии с очень сильными основаниями:

Отрицательный заряд аниона (I) значительно делокализован:

поэтому в реакциях с галоидными алкилами можно получить как N-замещенные алкилпирролы (при низких температурах):

так и a - алкилпирролы (при повышенной температуре):

Свободный пиррол в отличие от тиофена мало устойчив в кислых средах, также проявляя склонность к полимеризации и окислению. Однако, повышенная электронная плотность в кольце приводит и к большей легкости протекания реакций электрофильного замещения, которые проходят в мягких условиях, подобно фурану.

Пиррол имеет сравнительно высокую температуру кипения (130 о С), которая объясняется структурированием при образовании межмолекулярных водородных связей:

Имидазол, подобно пирролу, также значительно структурирован и имеет еще большую температуру кипения (250 о С):

Электрофильное замещение в кольце имидазола протекает по положениям 4 или 5, в которых электронная плотность намного больше, чем в положении 2. Атомы азота в молекуле имидазола равноценны, благодаря равновесию:

Наличие второго атома азота в кольце значительно понижает в нем электронную плотность, что стабилизирует молекулу в целом. Имидазол не боится кислой среды, а электрофильное замещение протекает значительно труднее, чем в случае с пирролом. Как слабая кислота, имидазол образует металлопроизводные с натрием или реактивами Гриньяра, подобно пирролу. Получают имидазол конденсацией глиоксаля и формальдегида в присутствии аммиака:

Методы получения

Фуран получают в промышленных масштабах из фурфурола, каталитическим декарбоксилированием:

Сам фурфурол получают кипячением с разбавленными кислотами пятиатомных углеводов (пентоз), которые в больших количествах содержатся подсолнечной шелухе, кукурузных початках, отрубях и др.

Тиофен получают циклизацией бутана или бутилена в парах серы при 700 оС:

Пиррол (в переводе означает “красное масло) получают пиролизом аммонийной соли слизевой кислоты:

Или восстановлением сукцинимида цинковой пылью:

Ю. К. Юрьев открыл реакции взаимопревращений пятичленных гетероциклов, которые также применяют с целью их получения. Реакция идет в токе сероводорода, аммиака и воды, при высоких температурах, над окисью алюминия:

Шестичленные ароматические гетероциклы и их производные

Распределение электронной плотности по атомам пиридинового кольца показано на схеме:

Молекула пиридина поляризована и отрицательный центр поляризации сосредоточен на атоме азота. Вследствие этого, как уже было отмечено ранее, электрофильное замещение в пиридине протекает значительно труднее, чем в незамещенном бензоле, а нуклеофильное- легче, особенно при взаимодействии с сильными основаниями:

Так, сульфирование пиридина пиросерной кислотой протекает при 250 о С в бета-положение, нитрование нитратом калия в азотной кислоте также проходит с трудом, только при 350 о С и с выходом 15%, в то время как реакция с амидом натрия идет при сравнительно небольшом нагревании.

Атом азота в пиридине устойчив по отношению к окислителям, поэтому алкилпиридины легко окисляются до пиридинкарбоновых кислот:

Однако, под действием перекисей, пиридин легко превращается в окись пиридина:

Последняя легко подвергается реакциям электрофильного замещения, с образованием замещенных, подобно активированным электронодонорными заместителями производным бензола:

На схеме отчетливо видно, каким образом в окиси пиридина кольцо активировано к электрофильному замещению, притом, во 2-м и 4-м положениях.

Это важный способ получения производных пиридина, которые не могут быть получены путем прямого замещения. После реакции замещения окись восстанавливают в пиридин диметилсульфоксидом.

Из бензозамещенных имеет практическое значение 2,3-бензопиридин или хинолин. Хинолин получают из каменноугольной смолы (как и сам пиридин), либо синтезируют из анилина и глицерина, в присутствии серной кислоты и окислителя- нитробензола (синтез Скраупа ). Из глицерина получается участвующий далее в реакции акролеин :

НО-СН 2 -СН(ОН)-СН 2 -ОН + H 2 SO 4 --> CH 2 =CH-CHO + 2 H 2 O

Для пиридинового кольца хинолина характерны все реакции самого пиридина, однако реакции электрофильного замещения идут в бензольном кольце, в положениях 5 или 8:

При взаимодействии с окислителями (Cr 2 O 4 2- , в кислой среде, при нагревании) разрушается бензольное кольцо хинолина:

Хинолин применяется как высококипящий растворитель, а также для синтеза лекарственных препаратов и красителей.

Пиримидин, отличающийся от пиридина наличием двух атомов азота в кольце, по положениям 1 и 3, имеет больший частичный положительный заряд в положениях 2, 4 и 6, и меньший- в положении 5, поэтому он инертен к электрофильным атакам:

По этой же причине пиримидин устойчив к действию окислителей. Хорошая растворимость в воде объясняется образованием водородных связей при участии атомов азота.

Производные пиримидина: цитозин (I), тимин (II) и урацил (III) являются важнейшими компонентами нуклеиновых кислот, неотъемлемыми частями любой живой материи:

Конденсированное производное имидазола и пиримидина (пурин, I)- так же основоположник азотистых оснований, важнейших компонентов нуклеиновых кислот: аденина (II) и гуанина (III):

Алкалоиды

Алкалоиды- группа веществ, основу которых составляют азотистые основания, извлекаемые из растений и оказывающие сильное физиологическое действие на организм млекопитающих, обычно на нервную систему. Благодаря сильному физиологическому действию эта группа веществ приобрела важное значение в виде лекарств и многие алкалоиды применялись для этих целей еще до их индивидуального выделения и установления структуры- просто в виде настоек растений. Еще раньше соки алкалоидоносных растений использовались в качестве сильных ядов. Алакалоидоносными растениями являются в основном растения нескольких семейств: пасленовых, лютиковых, маковых, мореновых, сложноцветных и некоторых других. Часто один вид растений содержит несколько алкалоидов. В растениях алкалоиды связаны в соли, образованные кислотами –яблочной, винной, лимонной и т.д.

Алкалоид пилокарпин был выделен (Арди, 1895) из листьев Pilicarpus Jaborandi , произрастающего в Африке, и нашел применение в борьбе с глаукомой, заболеванием глаз, связанным с повышением внутриглазного давления:

Кониин (главный алкалоид болиголова, сильный яд) представляет собой альфа-пропилпиперидин:

В высохшем соке, выделенном из надрезов на головках мака (опий), имеется алкалоид папаверин , строение которого установил Гольдшмидт. Папаверин находит широкое применение в медицине, как сосудорасширяющее средство:

В соке недозрелых головок мака находятся близкородственные по строению алкалоиды- морфин и кодеин :

Иохимбин - алкалоид коры африканского растения корианте иохимбе - находится в этой коре вместе с рядом его изомеров. Компонент пищевых добавок «Гингко-Форте» и «Гингко-Билоба». Родственный ему резерпин -алкалоид индийского растения Раувольфия змеиная

К числу гетероциклических относят органические соединения, циклы которых включают, кроме атомов углерода, один или несколько других элементов. В образовании циклов могут принимать участие различные гетероатомы, но чаще всего - кислород, азот и сера.

Гетероциклические соединения широко распространены в природе. На их долю приходится около 50% природных веществ, в том числе отличающихся высокой биологической активностью (алкалоиды, витамины, ферменты, антибиотики). Многие из этих биологически активных веществ применяют в качестве лекарственных средств или исходных продуктов для их синтеза. Источниками биологически активных природных веществ, имеющих гетероциклическую структуру, служат продукты растительного и животного происхождения.

За счет гетероциклических соединений непрерывно пополняется число синтетических лекарственных веществ. Предпосылкой для этого является «родство» их строения с природными биологически активными веществами организма человека. Поэтому в настоящее время на долю гетероциклических соединений приходится более половины применяемых в медицине лекарственных веществ.

По химическому строению гетероциклические соединения очень разнообразны. Они различаются общим числом атомов в цикле, природой гетероатомов и их количеством в цикле.

По числу всех атомов в циклах гетероциклические соединения делят на трех-, четырех-, пяти-, шести- и семичленные, а по характеру гетероатомов - на азот-, кислород-, серосодержащие. Число этих гетероатомов может быть от одного до четырёх.

Классифицируют гетероциклические соединения на следующие группы.

Трехчленные гетероциклы с одним гетероатомом:

Пятичленные гетероциклы с одним гетероатомом:

Пятичленные гетероциклы с несколькими гетероатомами:

Шестичленные гетероциклы с одним гетероатомом:

Шестичленные гетероциклы с несколькими гетероатомами:

Семичленные гетероциклы с одним и двумя гетероатомами:

Молекулы гетероциклов могут содержать различные заместители. Известно также большое число систем, в которых гетероциклы конденсированы между собой и с другими ароматическими или гидроароматическими циклами. Конденсированные гетероциклические системы составляют структурную основу многих природных и синтетических лекарственных веществ.

Наличие гетероатомов в молекулах гетероциклических соединений обусловливает значительную лабильность их молекул по сравнению с другими органическими соединениями. Это особенно проявляется у гетероциклов с несколькими гетероатомами и при наличии различных заместителей в молекуле. Такие производные имеют наибольшую тенденцию к раскрытию цикла и рециклизации, а также к различного рода таутомерным превращениям.

Перечисленные особенности химической структуры имеют важное значение для синтеза и анализа гетероциклических соединений. Кроме того, есть все основания предполагать, что одной из основных причин высокой биологической активности многих гетероциклических соединений является особенность их химической структуры, обеспечивающая в широких пределах возможность перемещения электронов.

Лекарственные средства, имеющие гетероциклическую структуру, можно получить из природного сырья или синтетическим путем. Некоторые гетероциклические соединения выделяют из продуктов переработки каменноугольной смолы, содержащей пиридин и его гомологи, хинолин, изохинолин, акридин, индол и др. Древесная смола содержит метилфуран, фурфурол. Более сложные по химической структуре гетероциклические соединения представляют собой многие алкалоиды, витамины, ферменты, содержащиеся в растениях.

Способы синтеза гетероциклических соединений разнообразны. Их синтезируют из ряда алифатических производных путем замыкания цикла, превращения гетероциклов друг в друга (рециклизация), гидрирования ненасыщенных гетероциклических соединений до насыщенных, введения различных радикалов в простые по структуре гетероциклы или получения из них конденсированных систем.

Большинство методов синтеза основано на так называемой гетероциклизации, т.е. на образовании гетероцикла в результате замыкания в цикл одного или двух алифатических соединений. Такие реакции основаны главным образом на конденсации дикарбонильных соединений (альдегидов, карбоновых кислот) с аммиаком или алифатическими и ароматическими соединениями, содержащими в молекуле первичную ароматическую аминогруппу. Этот общий принцип использован для получения различных азотсодержащих гетероциклов, составляющих структурную основу многих синтетических и природных лекарственных веществ. Гетероциклические системы получают также из ароматических и гетероциклических соединений, содержащих в молекулах аминогруппы, путем конденсации их с карбонильными соединениями (альдегидами, кетонами).

ГЛАВА 51.

ПРОИЗВОДНЫЕ ФУРАНА

Производные 5-нитрофурана

Используемые в качестве лекарственных веществ, производные 5-нитрофурана имеют различные заместители в положении 2:

Из многочисленных синтезированных в 50-е годы XX века в Институте органического синтеза АН Латвии (С.А. Гиллер, К.К. Вентер, Р.Ю. Калнберг) производных нитрофурана в качестве химиотерапевтических средств наиболее широко применяют: нитрофурал (фурацилин), нитрофурантоин (фурадонин), фуразолидон, фуразидин (фурагин).

Исходный продукт синтеза производных 5-нитрофурана - фурфурол (a-фурилальдегид). Его получают из отходов деревообрабатывающей промышленности, а также из соломы, шелухи подсолнечника, коробочек хлопчатника путем обработки разведенной серной кислотой и отгонки с водяным паром. При этом происходит образование фурфурола из пентоз (моносахаридов) и пентозанов (полисахаридов), содержащихся в этом сырье.

Из фурфурола нитрованием получают 5-нитрофурфурол. Процесс этот наиболее экономичен при последовательном получении вначале диацетата 5-нитрофурфурола, который затем гидролизуется разведенной серной кислотой до 5-нитрофурфурола:

Дальнейший синтез основан на конденсации 5-нитрофурфурола с различными веществами, содержащими аминогруппу, по общей схеме:

Для синтеза нитрофурала на 5-нитрофурфурол действуют семикарбазида гидрохлоридом:

Фуразолидон синтезируют аналогично конденсацией 5-нитрофурфурола с 3-аминооксазолидоном-2:

При синтезе фуразидина, у которого иминная группа отделена от нитрофуранового фрагмента этиленовым радикалом, 5-нитрофурфурол вначале конденсируют с ацетальдегидом, а затем сочетают с 1-аминогидантоином:

Производные нитрофурана сходны по физическим свойствам (табл.51.1). Это желтые с зеленоватым оттенком кристаллические вещества, без запаха. Они очень мало растворимы или практически нерастворимы в воде и в этаноле (нитрофурал очень мало и медленно растворим), мало или умеренно растворимы в диметилформамиде, мало или очень мало - в ацетоне. Ввиду наличия не только нитро-, но и имидной группы, нитрофурал проявляет в растворах кислотные свойства и лучше других растворяется в щелочах. В кипящей воде нитрофурал растворим в соотношении 1:5000. Фуразидин выпускают также в виде растворимой в воде калиевой соли.

51.1. Свойства производных 5-нитрофурана

Лекарственное вещество Химическая структура Описание
Nitrofural- нитрофурал (Фурацилин) 5-нитрофурфурола семикарбазон Желтый или зеленовато-желтый мелкокристаллический порошок без запаха. Т.пл. 230–236 °C
Nitrofurantoin- нитрофурантоин (Фурадонин) N -(5-нитро-2-фурфурилиден)-1-аминогидантоин Порошок желтого или желтого с зеленым оттенком цвета. Т.пл. 258–263°C (с разложением)
Furazolidone- фуразолидон N -(5-нитро-2-фурфурилиден)-3-аминооксазолидон-2 Желтый или желтый с зеленоватым оттенком мелкокристаллический порошок без запаха. Т.пл. 253–258 °C (с разложением)
Furazidin- фуразидин (Фурагин) 1--гидантоин Порошок от желтого до оранжевого цвета без запаха

Для испытания подлинности используют ИК-спектры производных нитрофурана. Их спрессовывают в виде таблеток с бромидом калия и снимают спектры в области 1900-700 см –1 . ИК-спектры должны полностью совпадать с ИК-спектрами ГСО. ИК-спектр нитрофурала имеет полосы поглощения при 971, 1020, 1205, 1250, 1587, 1724 см –1 .

Используемые для испытаний производных 5-нитрофурана химические реакции основаны на их гидролитическом расщеплении, окислительно-восстановительных, кислотно-основных свойствах, образовании ацисолей (нитрогруппа).

Подлинность производных 5-нитрофурана устанавливают по цветной реакции с водным раствором гидроксида натрия. Структура образующихся продуктов находится в зависимости от условий проведения реакции, особенностей химического строения производных 5-нитрофурана, температуры, растворителя и концентрации реактива. Нитрофурал при использовании разбавленных растворов щелочей образует ацисоль, окрашенную в оранжево-красный цвет:

При нагревании нитрофурала в растворах гидроксидов щелочных металлов происходит разрыв фуранового цикла и образуется карбонат натрия, гидразин и аммиак. Последний обнаруживают по изменению окраски влажной красной лакмусовой бумаги:

Фуразидин после нагревания (2 мин) с 30%-ным раствором гидроксида натрия приобретает коричневое окрашивание.

Нитрофурантоин в разбавленных растворах щелочей при комнатной температуре образует в результате таутомерных превращений гидантоина ацисоль, окрашенную в темно-коричневый цвет:

Раствор фуразолидона в тех же условиях, но при нагревании, приобретает бурое окрашивание за счет разрыва лактонного цикла и образования ацисоли:

Эта реакция может быть использована для отличия нитрофурала от нитрофурантоина и фуразолидона.

Фуразолидон и нитрофурантоин можно отличить друг от друга по различной окраске продуктов взаимодействия с едкими щелочами в среде неводных растворителей основного характера, например диметилформамида. В качестве реактива используют водно-спиртовый раствор гидроксида калия. Нитрофурантоин при этом последовательно окрашивается в желтый, а затем в коричневато-жёлтый и светло-коричневый цвет. Фуразолидон приобретает красно-фиолетовое окрашивание, переходящее в темно-синее, а затем в фиолетовое или красно-фиолетовое.

Характерные цветные реакции, позволяющие отличать друг от друга производные 5-нитрофурана, дает спиртовый раствор гидроксида калия в сочетании с ацетоном: нитрофурал приобретает темно-красное окрашивание, нитрофурантоин - зеленовато-желтое, переходящее в бурое с выпадением бурого осадка, фуразолидон - постепенно появляющееся красное окрашивание, переходящее в бурое, фуразидин приобретает красное окрашивание с выпадением объемного красного осадка.

Нитрофурал, нитрофурантоин и фуразолидон идентифицируют с помощью общей реакции образования 2,4-динитрофенилгидразона (температура плавления 273 °C). Он выпадает в осадок при кипячении раствора лекарственного вещества в диметилформамиде с насыщенным раствором 2,4-динитрофенилгидразина и 2М раствора хлороводородной кислоты.

Раствор нитрофурала в диметилформамиде после добавления свежеприготовленного 1%-ного раствора нитропруссида натрия и 1М раствора гидроксида натрия дает красное окрашивание. Нитрофурантоин в этих условиях приобретает желтое, а фуразолидон (через 5 мин) - оливково-зеленое окрашивание.

Производные нитрофурана образуют в слабощелочной среде окрашенные нерастворимые комплексные соединения с солями серебра, меди, кобальта и других тяжелых металлов. При добавлении к раствору нитрофурантоина (в смеси диметилформамида и воды) 1%-ного раствора сульфата меди (II), нескольких капель пиридина и 3 мл хлороформа, после встряхивания хлороформный слой приобретает зеленое окрашивание. Комплексные соединения нитрофурала и фуразолидона в этих условиях не извлекаются хлороформом.

Окислительно-восстановительные реакции (образования «серебряного зеркала», с реактивом Фелинга) могут быть выполнены после щелочного гидролиза, сопровождающегося образованием альдегидов.

При испытаниях на чистоту устанавливают в производных 5-нитрофурана допустимое содержание посторонних примесей (от 0,4 до 1%). Испытания выполняют методом ТСХ, используя готовые хроматографические пластинки типа Силуфол УФ-254 или Силикагель Г, различные системы растворителей для восходящей хроматографии. Проявителем служит фенилгидразина гидрохлорид или УФ-свет при длине волны 254 нм. Сравнивают со свидетелями количество, величину и окраску пятен на хроматограммах. В фуразидине определяют отсутствие легко обугливающихся (при 250 °C) примесей.

Количественное определение проявляющего восстановительные свойства нитрофурала выполняют иодометрическим методом, основанным на окислении иодом в щелочной среде (для улучшения растворимости к навеске прибавляют хлорид натрия и смесь подогревают). Титрованный раствор иода в щелочной среде образует гипоиодит:

I 2 + 2NaOH ® NaI + NaIO + H 2 O

Гипоиодит окисляет нитрофурал до 5-нитрофурфурола:

После окончания процесса окисления нитрофурала раствор подкисляют и титруют выделившийся избыток иода тиосульфатом натрия:

NaI + NaIO + H 2 SO 4 ¾® I 2 + Na 2 SO 4 + H 2 O

I 2 + 2Na 2 S 2 O 3 ¾® 2NaI + Na 2 S 4 O 6

Нитрофурантоин (по ФС) и фуразолидон, проявляющие слабые основные свойства, количественно определяют методом неводного титрования в диметилформамиде. Титруют 0,1 М раствором метилата натрия (индикатор тимоловый синий).

Известен способ определения нитрофурала броматометрическим методом, основанным на окислении гидразиновой группы в присутствии концентрированных кислот при температуре 80–90 °C:

H 2 N–NH 2 ¾¾® N 2 ­ + 2H 2 O

Фуразидин-калий количественно определяют ацидиметрически, титруя 0,01 М раствором хлороводородной кислоты (индикатор бромтимоловый синий).

Для установления подлинности и количественного определения нитрофурала используют УФ-спектры его 0,0006%-ных растворов в смеси диметилформамида с водой (1:50). Максимумы поглощения такого раствора в области 245-450 нм находятся при 260 и 375 нм, а минимум - при 306 нм. Максимумы второй полосы поглощения (365-375 нм) более специфичны для производных 5-нитрофурана, т.к. обусловлены наличием различных электронодонорных групп в положении 2 фуранового цикла. Количественное спектрофотометрическое определение выполняют при 375 нм и рассчитывают содержание с использованием стандартного образца нитрофурала.

Для испытания подлинности нитрофурантоина, фуразолидона и фуразидина используют УФ-спектры растворов в области 240-450 нм. Растворителем служит диметилформамид с водой или ацетатным буферным раствором. В этих условиях нитрофурантоин имеет максимумы поглощения при 266 и 367 нм; фуразолидон - максимумы при 260 и 367 нм и минимум - при 302 нм; фуразидин - максимумы при 292 и 396 нм. Количественное спектрофотометрическое определение фуразолидона выполняют при 367 нм (растворитель 0,5%-ный раствор диметилформамида в воде). Содержание рассчитывают по ГСО фуразолидона или по величине удельного показателя поглощения (750). Фуразидин количественно определяют при длине волны 396 нм (растворитель 0,6%-ный раствор диметилформамида в ацетатном буферном растворе). Расчёты выполняют по ГСО стандартного образца фуразидина.

Растворителем для УФ-спектрофотометрического определения может служить 50%-ный раствор серной кислоты, в котором нитрофурал, нитрофурантоин и фуразолидон имеют максимумы поглощения при 227 нм.

Количественное определение нитрофурала, нитрофурантоина и фуразолидона можно проводить фотоколориметрическим методом, основанным на использовании цветных реакций с едкой щелочью в различных растворителях.

Производные 5-нитрофурана хранят по списку Б в прохладном месте в хорошо укупоренной таре, предохраняющей от действия света и влаги.

Нитрофурал назначают наружно для лечения и предупреждения гнойно-воспалительных процессов (в виде 0,02%-ных водных, 0,066%-ных спиртовых растворов и 0,2%-ной мази) и внутрь (по 0,1 г) для лечения бактериальной дизентерии. Нитрофурантоин назначают внутрь для лечения инфекционных заболеваний мочевых путей (по 0,1–0,15 г). Фуразолидон в тех же дозах менее токсичен и более активен. Назначают при смешанных инфекциях. Фуразидин применяют внутрь по 0,1-0,2 г и местно в виде глазных капель 1:13000, для промывания ран, ожогов и др. Фуразидин калия применяют при тяжелых инфекционно-воспалительных процессах. Вводят в виде 1%-ного раствора внутривенно.

Производные бензофурана

Бензофуран лежит в основе химической структуры двух лекарственных веществ, различных по фармакологическому действию - амиодарона и гризеофульвина (табл. 41.2).

Амиодарон - синтетическое антиангинальное и антиаритмическое средство. Гризеофульвин - антибиотик, продуцируемый различными видами плесневых грибов, в частности Penicillium nigricans griseofulvum. При биосинтезе накапливается в мицелии и ферментативном растворе, откуда извлекается экстракцией хлороформом. Экстракт упаривают, остаток экстрагируют горячим бензолом и перекристаллизовывают из этанола. Он проявляет противогрибковое действие.

Помимо бензофуранового ядра, в молекуле амиодарона имеется фенильный радикал с двумя атомами иода и две алифатические цепи (табл. 51.2). Основой химической структуры гризеофульвина является гетероциклическая система гризан, включающая 2,3-дигидробензофуран и конденсированный с ним (в положении 2) циклогексан:

51.2. Свойства лекарственных веществ, производных бензофурана

Амиодарон и гризеофульвин - белые или с желтоватым (кремоватым) оттенком кристаллические вещества. Амиодарон очень мало растворим в воде, умеренно растворим в этаноле, легко растворим в метиленхлориде. Гризеофульвин практически нерастворим в воде и эфире, мало растворим в этаноле, ацетоне, бутилацетате, легко растворим в диметилформамиде.

Для испытания подлинности амиодарона и гризеофульвина используют ИК-спектроскопию, УФ-спектрофотометрию, а также методы ТСХ и ВЭЖХ. Сравнивают ИК-спектры испытуемых веществ и стандартных образцов, снятых в дисках с бромидом калия в области 4000-400 см –1 (амиодарон) или 3300-680 см –1 (гризеофульвин). Они должны полностью совпадать. С теми же стандартными образцами сравнивают УФ-спектры поглощения гризеофульвина в области 230-300 нм. Его растворы в этаноле должны иметь максимумы поглощения при 231 и 291 нм. Хроматограммы испытуемого и стандартного растворов амиодарона, полученные на пластинках силикагеля F 254 , не должны отличаться по расположению и интенсивности окраски основного пятна (в УФ-свете). Должны также совпадать времена удерживания амиодарона и его ГСО при выполнении анализа методом ВЭЖХ.

Для испытания подлинности используют цветные реакции. Раствор гризеофульвина в концентрированной серной кислоте под действием дихромата калия приобретает темно-красное окрашивание. Если поместить в пробирку амиодарон, прибавить дихромат калия и концентрированную серную кислоту, накрыть пробирку фильтровальной бумагой, смоченной раствором дифенилкарбазида в уксусной кислоте, то бумага окрашивается в фиолетово-красный цвет. Подлинность гризеофульвина устанавливают также по голубовато-сиреневому свечению нанесённого на фильтровальную бумагу его 1%-ного раствора в ацетоне, возникающему при облучении ртутно-кварцевой лампой. При нагревании до кипения спиртового раствора гризеофульвина с 0,2 г бисульфита натрия и 2 мл раствора гидроксида натрия появляется лимонно-желтое окрашивание. Тот же раствор после добавления концентрированной хлороводородной кислоты и порошка магния приобретает жёлтое окрашивание, переходящее в желто-коричневое. Окрашенное соединение извлекается амиловым спиртом.

Амиодарон испытывают на наличие хлорид-иона.

Для испытания на чистоту амиодарона используют различные методы. Наличие примеси иодидов определяют фотоколориметрическим методом по интенсивности поглощения испытуемого и стандартного растворов при длине волны 420 нм после действия раствором иодата калия в кислой среде. Примеси родственных по структуре соединений (не более 0,5%) и примесь (2-хлорэтил)-диэтиламина (не более 0,2%) определяют методом ТСХ. Остаточные растворители: ацетон (не более 0,5%), метиленхлорид (не более 0,01%) определяют методом ГЖХ с плазменно-ионизационным детектором.

Методом ВЭЖХ на хроматографе с УФ-детектором устанавливают наличие в гризеофульвине специфических примесей с относительными временами удерживания 0,56-0,57; 0,87-0,88 и 1,09-1,10. Подвижная фаза состоит из воды, ацетонитрила и ледяной уксусной кислоты (49:45:1). Детектируют при длине волны 291 нм. Суммарное содержание примесей не должно превышать 2%. При испытании на чистоту порошка гризеофульвина требуется микроскопический контроль с помощью окулярмикрометра, т.к. его активность повышается с увеличением степени дисперсности и достигает оптимального значения при размере кристаллов не более 4 мкм. Проводится также испытание на микробиологическую чистоту.

Количественное определение амиодарона (по НД) выполняют методом нейтрализации. Навеску растворяют в смеси этанола и 0,01 М раствора хлороводородной кислоты. Титруют с использованием потенциометра 0,1 М раствором натрия гидроксида. Объём титранта, пошедшего на титрование, устанавливают на потенциометрической кривой между двумя точками перегиба.

Количественное определение амиодарона и гризеофульвина можно выполнить методом ВЭЖХ. При определении гризеофульвина используют подвижную фазу вода-ацетонитрил-тетрагидрофуран (60:35:5). Детектируют при длине волны 254 нм, сравнивая со стандартным раствором гризеофульвина в метаноле.

Можно определить содержание гризеофульвина спектрофотометрическим методом (по МФ) при длине волны 291 нм, используя в качестве растворителя безводный этанол. Расчёты выполняют по величине удельного показателя поглощения (686). Известен фотоколориметрический метод, основанный на использовании цветной реакции со стабилизированной солью диазония из 4-амино-2’,5’-диметоксибензанилида. Описан люминесцентный способ определения гризеофульвина.

Хранят амиодарон и гризеофульвин по списку Б в сухом, защищенном от света месте при температуре не выше 25 °C, в хорошо укупоренной таре. Применяют амиодарон внутрь при хронической ишемии сердца с синдромом стенокардии и нарушением сердечного ритма в виде таблеток по 0,2 г или вводят внутривенно 5%-ный раствор. Гризеофульвин, являющийся фунгицидным средством, назначают внутрь в таблетках по 0,125 г или наружно в виде 2,5%-ного линимента (суспензии) для лечения больных дерматомикозами, вызванными патогенными грибами.

ГЛАВА 52.

13.1. Общая характеристика 13.1.1. Классификация

Гетероциклическими называют циклические органические соединения, в состав цикла которых, помимо атомов углерода, входят один или несколько атомов других элементов (гетероатомов).

Гетероциклические соединения очень разнообразны. Их классифицируют согласно следующим структурным признакам:

Природа гетероатома;

Число гетероатомов;

Размер цикла;

Степень насыщенности.

В зависимости от природы гетероатома различают, в частности, азот-, кислород-, серосодержащие гетероциклические соединения. Гетероциклы с этими гетероатомами наиболее важны в связи с их биологической ролью.

По числу гетероатомов гетероциклические соединения подразделяют на гетероциклы с одним, двумя и т. д. гетероатомами. При этом гетероатомы могут быть как одинаковыми, так и разными.

Размер цикла может быть различным, начиная с трехчленного. Наибольшее распространение в природе имеют пяти- и шестичленные циклы, содержащие в качестве гетероатомов азот, кислород, серу. В таких соединениях валентные углы между атомами в цикле существенно не отличаются от обычных валентных углов sp 3 - или sр 2 -гибридизованного атома углерода. Причина этого заключается в одинаковой гибридизации атомов С, N, О, S и сравнительно небольших размерах указанных атомов, близких по размеру к группе СН 2, поэтому замена группировки -СН 2- или -СН= в цикле на такой гетероатом практически не изменяет геометрию молекулы.

Гетероциклы могут быть ароматическими, насыщенными и ненасыщенными.

Ароматические гетероциклы - самые распространенные в природе, поэтому им уделено основное внимание в данной главе. Наиболее важные гетероциклы, составляющие основу многих природных биологически активных веществ и лекарственных средств, приведены на схеме 13.1.

Насыщенные гетероциклы, например приведенные ниже, представляют собой циклические простые эфиры (см. 8.2) или вторичные амины с циклическим скелетом.

Ненасыщенные гетероциклы (кроме ароматических) часто неустойчивы и встречаются, как правило, в виде производных. Кислородсодержащий гетероцикл α-пиран вообще не известен, так как термодинамически неустойчив.

Схема 13.1. Ароматические гетероциклические соединения

13.1.2. Номенклатура

Названия ароматических гетероциклов, как правило, тривиальные, и они приняты номенклатурой ИЮПАК (см. схему 13.1).

В моноциклических соединениях нумерация атомов всегда начинается от гетероатома (примеры нумерации приведены выше). В гетероциклах с несколькими одинаковыми гетероатомами эти атомы получают наименьшие номера. Если имеются два атома азота с различным электронным строением (-N= и -NH-), то нумерацию ведут от фрагмента -NH-, как показано на примерах пиразола и имидазола. В гетероциклах с разными гетероатомами старшим считается кислород, далее сера и затем азот.

В конденсированных гетероциклах нумерацию ведут от одной из вершин бициклической структуры так, чтобы гетероатом полу- чил наименьший номер (см. примеры хинолина и изохинолина). Однако имеются исключения из этого правила, как, например, пурин (см. схему 13.1), для которого сохранена исторически сложившаяся нумерация.

Производные гетероциклов называют по общим правилам заместительной номенклатуры (см. 1.2.1), где в качестве названий родоначальных структур приняты тривиальные названия гетероциклов. В приведенных примерах в скобках указаны также тривиальные названия некоторых производных.

13.2. Реакционная способность ароматических гетероциклов

13.2.1. Ароматические свойства

Пиридин по электронному строению напоминает бензол. Все атомы углерода и атом азота находятся в состоянии sp 2 -гибридизации, и все σ-связи (C-C, C-N и C-H) лежат в одной плоскости (рис. 13.1, а). Из трех гибридных орбиталей атома азота две участвуют в образовании

Рис. 13.1. Пиридиновый атом азота (а), (б) и сопряженная система в молекуле пиридина (в) (связи С-Н для упрощения рисунка опущены)

σ-связей с атомами углерода (показаны только оси этих орбиталей), а третья орбиталь содержит неподеленную пару электронов и в образовании связи не участвует. Атом азота с такой электронной конфигурацией называют пиридиновым.

За счет электрона, находящегося на негибридизованной р-орбитали (см. рис. 13.1, б), атом азота участвует в образовании единого электронного облака ср -электронами пяти атомов углерода (см. рис. 13.1, в). Таким образом, пиридин является π,π-сопряженной системой и удовлетворяет критериям ароматичности (см. 2.3.2).

В результате большей электроотрицательности по сравнению с атомом углерода пиридиновый атом азота понижает электронную плотность на атомах углерода ароматического кольца, поэтому системы с пиридино-

вым атомом азота называют π-недостаточными. Кроме пиридина, примером таких систем служит пиримидин, содержащий два пиридиновых атома азота.

Пиррол также относится к ароматическим соединениям. Атомы углерода и азота в нем, как и в пиридине, находятся в состоянии sp2-гибридизации. Однако в отличие от пиридина атом азота в пирроле имеет иную электронную конфигурацию (рис. 13.2, а, б).


Рис. 13.2. Пиррольный атом азота (а), распределение электронов по орбиталям (б) и сопряженная система в молекуле пиррола (в) (связи С-Н для упрощения рисунка опущены)

На негибридизованной р -орбитали атома азота находится неподеленная пара электронов. Она участвует в сопряжении с р -электрона- ми четырех атомов углерода с образованием единого шестиэлектронного облака (см. рис. 13.2, в). Три sp2-гибридные орбитали образуют три σ-связи - две с атомами углерода, одну с атомом водорода. Атом азота в таком электронном состоянии получил название пиррольного.

Шестиэлектронное облако в пирроле благодаря р,п -сопряжению делокализовано на пяти атомах цикла, поэтому пиррол представляет собой π-избыточную систему.

В фуране и тиофене ароматический секстет также включает неподеленную пару электронов негибридизованной p-АО кислорода или серы соответственно. В имидазоле и пиразоле два атома азота вносят разный вклад в образование делокализованного электронного облака: пиррольный атом азота поставляет пару и-электронов, а пиридиновый - один p-электрон.

Ароматичностью обладает также пурин, представляющий собой конденсированную систему двух гетероциклов - пиримидина и имидазола.

Делокализованное электронное облако в пурине включает 8 π-электронов двойных связей и неподеленную пару электронов атома N-9. Общее число электронов в сопряжении, равное десяти, соответствует формуле Хюккеля (4n + 2, где п = 2).

Гетероциклические ароматические соединения обладают высокой термодинамической устойчивостью. Неудивительно, что именно они служат структурными единицами важнейших биополимеров - нуклеиновых кислот.

13.2.2. Кислотно-основные и нуклеофильные свойства

Основные свойства гетероциклических соединений обусловлены неподеленной парой электронов гетероатома, способной присоединять протон. Такими свойствами обладает пиридиновый атом азота, у которого n-электроны находятся на sp2-гибридной орбитали и не вступают в сопряжение. Пиридин является основанием и с сильными кислотами образует пиридиниевые соли, подобные аммониевым солям.

Аналогично основные свойства проявляют и другие гетероциклы, содержащие пиридиновый атом азота. Так, имидазол и пиразол образуют соли с минеральными кислотами за счет пиридинового атома азота.

Пиррольный атом азота в молекулах имидазола, пиразола и, естественно, самого пиррола не склонен связывать протон, так как его неподеленная пара электронов является частью ароматического секстета. В результате пиррол практически лишен основных свойств.

В то же время пиррольный атом азота может служить центром кислотности. Пиррол ведет себя, как слабая NH-кислота, поэтому протон будет отщепляться только при действии очень сильных оснований, например амида натрия NaNH 2 или гидрида натрия NaH. За счет пиррольного атома азота в реакциях со щелочными металлами также образуются соли, которые легко гидролизуются.

Таким образом, имидазол и пиразол могут проявлять как основные, так и кислотные свойства, т. е. являются амфотерными соединениями.

Гетероциклы, содержащие пиридиновый атом азота, проявляют и нуклеофильные свойства, т. е. способность атаковать атом углерода, несущий частичный положительный заряд (электрофильный центр). Так, взаимодействие пиридина с галогеноалканами приводит к образованию алкилпиридиниевых солей.

13.2.3. Особенности реакций электрофильного замещения

Пиррол и фуран относятся к π-избыточным системам. У них легче протекают реакции электрофильного замещения по сравнению с бензолом. Следует, однако, учитывать, что сильные кислоты, часто при- меняемые при электрофильном замещении, атакуют атомы углерода

π-избыточных гетероциклов, что приводит к образованию смесей полимерных продуктов, не имеющих практического применения. Способность гетероциклических соединений подвергаться глубоким превращениям под действием кислот называют ацидофобностью (боязнью кислот), а сами гетероциклы - ацидофобными.

Пиридин и другие гетероциклы с пиридиновым атомом азота являются электронодефицитными. Они гораздо труднее, чем бензол, вступают в реакции электрофильного замещения, а некоторые реакции (например, алкилирование по атомам углерода кольца) не идут вовсе. Низкая реакционная способность пиридина обусловлена еще и тем, что в сильнокислых средах, в которых осуществляется электрофильное замещение, пиридин находится в протонированной форме в виде катиона пиридиния C 5 H 5 NH + , что существенно затрудняет электрофильную атаку.

13.3. Пятичленные гетероциклы

13.3.1. Гетероциклы с одним гетероатомом

Важнейшим представителем пятичленных гетероциклов с одним гетероатомом является пиррол. Видимо, неслучайно сам пиррол был первым гетероциклическим соединением, выделенным из природных источников еще в 1834 г. К пиррольным соединениям относят конденсированную систему индола (см. схему 13.1) и полностью насыщенный аналог пиррола - пирролидин, которые входят в состав сложных по структуре молекул хлорофиллов, гема крови и алкалои- дов, например никотина и тропана (см. 13.6). Так, в основе структуры гема и хлорофиллов лежит тетрапиррольная система порфина.

Индол. По химическим свойствам эта ароматическая система очень напоминает пиррол. Индол также ацидофобен и практически лишен основных свойств. При взаимодействии с сильными основаниями ведет себя, как слабая NH-кислота.

Индол является структурным фрагментом белковой аминокислоты триптофана и продуктов его метаболических превращений - триптамина и серотонина, относящихся к биогенным аминам, а также (индол-3-ил)уксусной кислоты (гетероауксина).

Гетероауксин в растительном мире является гормоном роста и применяется в сельском хозяйстве для стимуляции роста растений.

Немало синтетических производных индола применяется в медицине. Примером таких соединений может служить антидепрессант индопан.

Фуран. Соединения фуранового ряда не обнаружены в продуктах метаболизма животных организмов, но они встречаются в растительном мире. Известны многие лекарственные средства, содержащие фурановое ядро, часто в комбинации с другими гетероциклами. Примерами служат противомикробные препараты фурацилин и фуразолидон.


13.3.2. Гетероциклы с двумя гетероатомами

Пятичленные гетероциклы с двумя гетероатомами, один из которых азот, имеют общее название азолы. Важнейшими из них являются имидазол, пиразол и тиазол (см. схему 13.1). Эти соединения, в отличие от пятичленных гетероциклов с одним гетероатомом, не разрушаются при действии кислот (т. е. неацидофобны), а образуют с ними соли (см. 13.2.1).

Имидазол. Этот гетероцикл является структурным фрагментом белковой аминокислоты гистидина и продукта ее декарбоксилирования - биогенного амина гистамина.

Имидазол, конденсированный с бензольным кольцом - бензимидазол - входит в состав ряда природных веществ, в частности витамина В 12 , а также вазодилатирующего средства дибазола (2-бен- зилбензимидазола).

Пиразол. Производные пиразола в природе не обнаружены. Наиболее известным производным пиразола является пиразолон, одна из изомерных форм которого приведена ниже. На основе пиразолона созданы анальгетические средства - анальгин, бутадион и др.

Тиазол. В цикле тиазола содержатся два разных гетероатома. Структура тиазола встречается в составе важных биологически активных веществ - тиамина (витамина В 1) и ряде сульфаниламидных препаратов, например, противомикробного средства фталазола.

Цикл полностью гидрированного тиазола - тиазолидин - является структурным фрагментом пенициллиновых антибиотиков (см. 15.6).

13.4. Шестичленные гетероциклы

13.4.1. Гетероциклы с одним гетероатомом

Пиридин. Этот наиболее типичный представитель ароматических гетероциклов проявляет большинство химических свойств ароматических соединений: легче вступает в реакции замещения, чем присоединения; его атомы углерода устойчивы к действию окислителей. Он термодинамически устойчив.

В то же время гомологи пиридина (аналогично гомологам бензола) легко окисляются в соответствующие пиридинкарбоновые кислоты. Важное значение имеет окисление изомерных метилпиридинов. Так, 3-метилпиридин превращается в никотиновую кислоту, а его 4-изо- мер - в изоникотиновую (пиридин-4-карбоновую) кислоту.

Кстати, никотиновая кислота получила свое название оттого, что была получена при окислении никотина (см. 13.6.1).

Как уже говорилось (см. 13.2.2), пиридин проявляет основные свойства; его основность несколько выше, чем ароматических аминов (например, анилина), но значительно ниже, чем алифатических аминов. Это

связано с тем, что неподеленная пара электронов атома азота занимает sp2-гибридную орбиталь. Атом азота в пиридине более электроотрицателен, чем sp3-гибридизованный атом азота в алифатических аминах, и, следовательно, прочнее удерживает свою электронную пару.

Благодаря пониженной электронной плотности на атомах углерода кольца пиридин может вступать в не характерные для бензола реакции с нуклеофильными реагентами. Наиболее восприимчиво к нуклеофильной атаке кольцо алкилпиридиниевого иона, где электронная плотность на атомах углерода особенно понижена. Так, алкилпиридиниевые соли способны восстанавливаться комплексными гидридами металлов в частично насыщенное производное пиридина, как упрощенно показано ниже.

В 1,4-дигидро-N-метилпиридине ароматичность нарушена, поэтому его молекула обладает большим запасом энергии и стремится путем обратной реакции окисления вновь перейти в ароматическое состояние. Эти реакции окисления-восстановления моделируют действие важного кофермента НАД+, в состав которого входит замещенный катион пиридиния (см. 14.3.2).

Структура полностью насыщенного пиридина - пиперидина - лежит в основе анальгетика промедола.

Важными производными пиридина являются некоторые витамины группы В, выступающие в роли структурных элементов кофер- ментов. Ниже приведены различные формы витамина В 6 , участвующие в виде фосфатов в реакции биосинтеза α-аминокислот (см. Приложение 12-4).

Никотиновая и изоникотиновая кислоты и их производные. Никотиновая кислота и ее амид - никотинамид - известны как две формы витамина РР. Никотинамид является составной частью ферментных систем, ответственных за окислительно-восстановительные процессы в организме, а диэтиламид никотиновой кислоты - кордиамин - служит эффективным стимулятором ЦНС.

На основе изоникотиновой кислоты синтезированы противотуберкулезные средства изониазид (тубазид) - гидразид этой кислоты и его производное фтивазид.


Хинолин и изохинолин. Эти конденсированные системы (см. схему 13.1) по свойствам подобны пиридину: проявляют основные свойства, способны образовывать четвертичные соли.

Ядро хинолина входит в состав противомикробного средства нитроксолина (5-НОК).

13.4.2. Гетероциклы с двумя гетероатомами

В этой группе наиболее важными являются гетероциклы, содержащие два атома азота. Они имеют общее название диазины и различаются взаимным расположением атомов азота.

Эти гетероциклы содержат атомы азота пиридинового типа, поэтому каждый из диазинов представляет собой шестиэлектронную ароматическую систему. Введение второго атома азота в шестичленное кольцо еще больше понижает активность гетероциклического ядра (по сравнению с пиридином) в реакциях электрофильного замещения.

Основность диазинов значительно (на 3-4 порядка) ниже, чем пиридина, поскольку один атом азота выступает в роли электроноакцептора по отношению к другому. Диазины образуют соли только с одним эквивалентом сильной кислоты.

Среди производных диазинов, имеющих биологическое значение и применяемых в медицине, наиболее важны гидрокси- и аминопроизводные пиримидина.

Для 2-гидроксипроизводных гетероциклов, содержащих фрагмент -N=C-OH, типична лактим-лактамная таутомерия как частный случай прототропной таутомерии (см. 9.2.3). Взаимопревращение тауто- мерных форм связано с переносом протона от гидроксильной группы, напоминающей фенольную группу ОН, к основному центру - пиридиновому атому азота и обратно. В полярных растворителях и в кристаллическом состоянии лактамные формы явно преобладают, что связано с большим сродством к протону атома азота, нежели атома кислорода.

Три пиримидиновых основания - урацил (2,4-дигидроксипи- римидин), тимин (2,4-дигидрокси-5-метилпиримидин) и цитозин (4-амино-2-гидроксипиримидин) - являются компонентами нуклеотидов и нуклеиновых кислот. Пиримидиновые основания существуют практически только в лактамной форме (лактамный фрагмент выделен цветной рамкой, лактимный - черной).

Очевидно, что в лактимной форме, т. е. гидроксиформе, пиримидиновое ядро ароматично. Однако и в лактамной форме ароматичность не нарушена, так как ароматическая система образована в результате участия в сопряжении неподеленной пары электронов «амидного» атома азота. Разрыв сопряжения в кольце отсутствует.

К производным пиримидина относится барбитуровая кислота (2,4,6-тригидроксипиримидин), которая может существовать в несколь- ких таутомерных формах, три из которых приведены ниже. Структуры (I) и (II) представляют соответственно лактимный и лактамный таутомеры, а структуры (II) и (III) - енольный и кетонный таутомеры. В кристаллическом состоянии барбитуровая кислота имеет строение триоксопроизводного (III), которое преобладает и в растворе.

Барбитуровая кислота легко образует соли при действии щелочей. Ее весьма высокая кислотность (p K a 3,9) обусловлена эффективной делокализацией отрицательного заряда в барбитурат-ионе с участием двух атомов кислорода.

Широкое применение в медицине нашли барбитураты - производные барбитуровой кислоты, у которых в положении 5 находятся два (реже - один) углеводородных заместителя. С начала ХХ в. в качестве снотворных средств использовались барбитал (веронал), фенобарбитал (люминал). Последний применяют в настоящее время как противоэпилептическое средство.

Барбитураты также обладают определенной кислотностью (например, p K a барбитала равен 7,9). Некоторые из них применяются в виде натриевых солей, например барбитал-натрий, что обусловлено хорошей растворимостью таких солей в воде.

Представителем шестичленных гетероциклических соединений с двумя различными гетероатомами (азота и серы) служит фенотиазин.

Важное значение имеют 2,10-дизамещенные производные фенотиазина, составляющие большую группу лекарственных средств психотропного действия. Один из них - аминазин - широко применяется как антипсихотическое средство.

13.5. Конденсированные гетероциклы

Из систем с двумя конденсированными гетероциклами важное значение имеют соединения пуринового ряда, в частности гидроксипурины и аминопурины, принимающие активное участие в процессах жизнедеятельности.

13.5.1. Гидроксипурины

Гипоксантин (6-гидроксипурин), ксантин (2,6-дигидроксипурин) и мочевая кислота (2,6,8-тригидроксипурин) образуются в организме при метаболизме нуклеиновых кислот. Ниже они изображены в лактамной форме, в которой находятся в кристаллическом состоянии.

У гидроксипуринов возможна как лактим-лактамная таутомерия, так и таутомерия азолов, связанная с миграцией атома водорода от атома N-7 к N-9, как показано на примере гипоксантина.

Мочевая кислота - конечный продукт метаболизма пуриновых соединений в организме. Она выделяется с мочой в количестве 0,5-1 г/сут. Мочевая кислота двухосновна, плохо растворима в воде, но легко растворяется в щелочах, образуя соли с одним или двумя эквивалентами щелочи (приведено вероятное строение солей).

Соли мочевой кислоты называют уратами. При некоторых нарушениях в организме они откладываются в суставах, например при подагре, а также в виде почечных камней.

Ксантин и гипоксантин по химическому поведению во многом аналогичны мочевой кислоте. Они амфотерны и образуют соли с кислотами и щелочами.

Метилированные в различной степени по атомам азота производные ксантина обычно относят к алкалоидам (см. 13.6). Это кофе- ин (1,3,7-триметилксантин), теофиллин (1,3-диметилксантин) и тео- бромин (3,7-диметилксантин). Их природными источниками служат листья чая, зерна кофе, бобы какао.

Кофеин - эффективный возбудитель ЦНС, он стимулирует работу сердца. Общестимулирующее действие теофиллина и теобромина выражено меньше, но они обладают довольно сильными мочегонными свойствами.

13.5.2. Аминопурины

Из аминопуринов наиболее важны аденин (6-аминопурин) и гуанин (2-амино-6-гидроксипурин), являющиеся структурными фрагмента- ми нуклеиновых кислот. Аденин также входит в состав некоторых

коферментов (см. 14.3). Преобладающей таутомерной формой гуанина является лактамная. Для обоих соединений возможна и таутомерия азолов в результате миграции атома водорода между атомами

N-7 и N-9.

При действии на аденин азотистой кислоты HNO 2 происходит его дезаминирование (см. 4.3) с образованием гипоксантина. Аналогичная реакция в случае гуанина приводит к ксантину.

13.6. Алкалоиды

Алкалоидами называют основные азотсодержащие вещества природного (главным образом растительного) происхождения.

Благодаря высокой фармакологической активности алкалоиды известны с давних времен и используются в медицине. Хрестоматийным примером служит применение с середины XVII в. хинина, выделяемо- го из коры хинного дерева, для лечения малярии.

Почти все алкалоиды имеют в структуре атом азота. Это обусловливает основные свойства алкалоидов, что нашло отражение в их групповом названии (от араб. al-qali - щелочь). В растениях алкалоиды содержатся в виде солей органических кислот - лимонной, яблочной, щавелевой и др.

Важнейшим структурным фрагментом большинства алкалоидов служит какой-либо азотсодержащий гетероцикл. Этот признак положен в основу химической классификации алкалоидов, по которой они подразделяются на группы в соответствии с типом гетероцикла в их структуре, например пиридина, хинолина и т. д. Такие алкалоиды имеют единство в биогенетическом происхождении от аминокислот, их называют истинными алкалоидами.

Наряду с этим существуют алкалоиды, у которых атом азота не включен в гетероциклическую структуру. Эти алкалоиды представляют собой растительные амины, их относят к протоалкалоидам.

При большом разнообразии структур алкалоидов в качестве общего химического свойства можно выделить реакции солеобразования. Эти реакции используют в двух направлениях:

Для получения хорошо растворимых в воде солей, например, с минеральными кислотами (хлориды, ацетаты);

Для получения окрашенных солей с ограниченной растворимостью (с органическими и неорганическими кислотами).

Первое направление используется главным образом для извлечения алкалоидов из природных источников, второе - в аналитических целях для качественного обнаружения алкалоидов.

13.6.1. Алкалоиды группы пирролидина, пиридина и пиперидина

Никотин - весьма токсичный алкалоид, содержание которого в листьях табака доходит до 8%. Включает связанные простой связью

ядра пиридина и пирролидина. Воздействует на вегетативную нервную систему, сужает кровеносные сосуды.

Никотиновая кислота (одна из форм витамина РР) является одним из продуктов окисления никотина и используется для синтеза других препаратов.

Лобелин и родственные ему алкалоиды обнаружены в североамериканском растении лобелия. Они близки по структуре и используются в медицине в качестве эффективных рефлекторных стимуляторов дыхания.

13.6.2. Алкалоиды группы тропана

Базовая структура алкалоидов этой группы - тропан - является бициклическим соединением, в состав которого входят пирролидино- вое и пиперидиновое кольца.

К тропановым алкалоидам относятся атропин и кокаин, применяемые в медицине как холиноблокаторы.

Атропин содержится в растениях семейства пасленовых: красавке, белене, дурмане. Несмотря на высокую токсичность, он широко применяется в глазной практике, благодаря способности расширять зрачок.

Кокаин - основной алкалоид южноамериканского кустарника Erythroxylon coca Lam. Это одно из первых используемых в медицине анестезирующих и наркотических средств. Синтетические аналоги кокаина, лишенные наркотических свойств, являются производными п-аминобензойной кислоты (см. 9.3).

13.6.3. Алкалоиды группы хинолина и изохинолина

Наибольшую известность из хинолиновых алкалоидов получил хинин, выделенный из коры хинного дерева. В состав хинина входят две гетероциклические системы - хинолиновая и хинуклидиновая.

Хинин используется в медицине более 300 лет в качестве противомалярийного средства. В настоящее время из-за ряда негативных побочных эффектов его использование сократилось и на смену ему пришли новые синтетические противомалярийные препараты.

Ядро изохинолина содержится в алкалоидах опия, представляющего собой высохший млечный сок незрелых коробочек мака опийного. Основной из них - морфин - обладает сильным обезболивающим свойством, но при длительном употреблении вызывает привыкание. Морфин был первым алкалоидом, выделенным в чистом виде (1806) и был назван по имени бога сна и сновидений Морфея.

Монометиловый эфир морфина - кодеин - оказывает противокашлевое действие, а диацетильное производное - героин - наркотик.

Другим алкалоидом группы изохинолина, также выделенным изопия, служит папаверин, применяемый в качестве эффективного спазмолитического средства. Синтетический аналог папаверина ношпа имеет с ним явное структурное сходство.

13.6.4. Протоалкалоиды

В эту группу алкалоидов входят растительные основания, не имеющие в своей структуре какого-либо гетероцикла. Важнейшим их представителем является эфедрин, выделяемый из различных видов эфедры.

В молекуле эфедрина содержатся два хиральных центра, в соответствии с этим эфедрин существует в виде четырех стереоизомеров и двух рацематов. Наибольшей фармакологической активностью обладает природный эфедрин, являющийся одним из стереизомеров.

Понравилась статья? Поделиться с друзьями: