Сечение сферы плоскостью есть круг. Сечение шара плоскостью

Представляет плоскую кривую - окружность, принадлежащую секущей плоскости.
Построить сечение сферы плоскостью общего положения β

Так как секущая плоскость общего положения, то эта окружность проецируется на плоскости проекций в виде эллипсов. Для построения эллипса необходимо знать размеры эллипса по его осям большой и малой.
Для тел вращения, к каковым относят цилиндр, конус и сферу, линия сечения может быть построена с характерными точками кривой к которым относятся:
- точки в которых меняется знак видимости;
- точки в которых ее координаты принимают максимальные и минимальные значения:
- x max ; x min ;
- y max ; y min ;
- z max ; z min ;
Использование характерных точек позволяет выполнить более точное построение линии пересечения поверхности вращения и плоскости.

Решение задачи на сечение сферы плоскостью значительно упрощается, если секущая плоскость занимает проецирующее положение.

Способом перемены плоскостей проекций переведем плоскость β из общего положения в частное - фронтально-проецирующее. На фронтальной плоскости проекций V 1 построим след плоскости β и проекцию шара. На следе плоскости β V берем произвольную точку 3" замеряем ее удаление от плоскости проекций H и откладываем его по линии связи уже на плоскости V 1 , получая точку 3" 1 . Через нее и пройдет след. Линия сечения шара - точки A" 1 , B" 1 совпадает здесь со следом плоскости. Далее на фронтальной плоскости проекций V 1 построим центр окружности сечения - точку C" 1 которую получим восстановив перпендикуляр из центра шара (точка 0" 1 ) к [A" 1 B" 1 ] на их пересечении. Далее включаем обратное проецирование: через точки A" 1 , B" 1 и C" 1 проводим горизонтали h принадлежащие плоскости β , и на плоскости проекций H через центр шара проводим вспомогательную горизонтально-проецирующую плоскость γ 1 . Горизонтальный след плоскости γ 1 пресечет проекцию горизонтали h и определит в этом месте точку C` - центра окружности сечения. Горизонталь h` пересекает проекцию шара в точках D` и E` , определяя тем самым действительную величину отрезка [DE ] - большой оси эллипса. Аналогично строятся точки A` и B` , определяющие величину отрезка [A`B` ] - малой оси эллипса.

Проекции большой и малой оси эллипса на горизонтальную плоскость проекции H найдены, а это означает что эллипс - проекция окружности сечения на H может быть построен, смотри статью: Окружность

Повторим те же действия на для фронтальной плоскости проекций V и построим другой эллипс - проекцию окружности сечения на V .

Для нахождения точек указывающих границы видимости горизонтальной проекции окружности сечения

проводим через центр шара фронтально-проецирующую плоскость γ 2 V β по горизонтали h(h`, h") . Линия h` пересекается с горизонтальной проекцией окружности сечения по точкам 5,6 указывающим границу видимости. Точки окружности сечения расположенные на фронтальной проекции ниже следа плоскости γ 2 , на горизонтальной плоскости проекции H 5`, 6` ] - и будут на ней невидимы.

Для нахождения точек указывающих границы видимости фронтальной проекции окружности сечения. Проводим через центр шара горизонтально-проецирующую плоскость γ 1 H , которая пересечет плоскость β по фронтали f(f`, f") . Линия f" пересекается с фронтальной проекцией окружности сечения по точкам 7", 8" указывающим границу видимости. Точки окружности сечения расположенные на горизонтальной проекции выше следа плоскости γ 1 , на фронтальной плоскости проекции V будут располагаться слева от отрезка [7", 8" ] - и будут на ней невидимы.

Введение

Шаром называется тело, которое состоит из всех точек пространства, находящихся на расстоянии, не большем данного, от данной точки. Эта точка называется центром шара, а данное расстояние радиусом шара.

Граница шара называется шаровой поверхностью, или сферой. Таким образом, точками сферы являются все точки шара, которые удалены от центра на расстояние, равное радиусу. Любой отрезок, соединяющий центр шара с точкой шаровой поверхности, также называемой радиусом.

Отрезок, соединяющий две точки шаровой поверхности проходящей через центр шара, называется диаметром. Концы любого диаметра называются диаметрально противоположными точками шара.

Шар, также как цилиндр и конус, является телом вращения. Он получается при вращении полукруга вокруг его диаметра как оси.

Сечение шара плоскостью

Всякое сечение шара плоскостью есть круг. Центр этого круга есть основание перпендикуляра, опущенного из центра шара на секущую плоскость.

Доказательство: Пусть - секущая плоскость и О - центр шара (рис. 1) Опустим перпендикуляр из центра шара на плоскость и обозначим через О" основание этого перпендикуляра.

Пусть X - произвольная точка шара, принадлежащая плоскости. По теореме Пифагора ОХ2=ОО"2+О"Х2. Так как ОХ не больше радиуса R шара, то О"Х?, т.е. любая точка сечения шара плоскостью находится от точки О" на расстоянии, не большем, следовательно, она принадлежит кругу с центром О" и радиусом. Обратно: любая точка Х этого круга принадлежит шару. А это значит, что сечение шара плоскостью есть круг с центром в точке О". Теорема доказана.

Площадь, проходящая через центр шара, называется диаметрально плоскостью. Сечение шара диаметральной плоскостью называется большим кругом, а сечение сферы - большой окружностью.

Или сферой . Любой отрезок, соединяющий центр шара с точкой шаровой поверхности, называется радиусом . Отрезок, соединяющий две точки шаровой поверхности и проходящий через центр шара, называется диаметром . Концы любого диаметра называются диаметрально противоположными точками шара. Всякое сечение шара плоскостью есть круг . Центр этого круга есть основание перпендикуляра, опущенного из центра на секущую плоскость. Плоскость, проходящая через центр шара, называется диаметральной плоскостью . Сечение шара диаметральной плоскостью называется большим кругом , а сечение сферы - большой окружностью . Любая диаметральная плоскость шара являются его плоскостью симметрии . Центр шара является его центром симметрии . Плоскость, проходящая через точку шаровой поверхности и перпендикулярная радиусу, проведенному в эту точку, называется касательной плоскостью . Данная точка называется точкой касания . Касательная плоскость имеет с шаром только одну общую точку - точку касания. Прямая, проходящая через заданную точку шаровой поверхности перпендикулярно к радиусу, проведенному в эту точку, называется касательной . Через любую точку шаровой поверхности проходит бесконечно много касательных, причем все они лежат в касательной плоскости шара. Шаровым сегментом называется часть шара, отсекаемая от него плоскостью. Шаровым слоем называется часть шара, расположенная между двумя параллельными плоскостями, пересекающими шар. Шаровой сектор получается из шарового сегмента и конуса. Если шаровой сегмент меньше полушара, то шаровой сегмент дополняется конусом, у которого вершина в центре шара, а основанием является основание сегмента. Если же сегмент больше полушара, то указанный конус из него удаляется. Основные формулы Шар (R = ОВ - радиус): S б = 4πR 2 ; V = 4πR 3 / 3. Шаровой сегмент (R = ОВ - радиус шара, h = СК - высота сегмента, r = КВ - радиус основания сегмента): V сегм = πh 2 (R - h / 3) или V сегм = πh(h 2 + 3r 2) / 6 ; S сегм = 2πRh . Шаровой сектор (R = ОВ - радиус шара, h = СК - высота сегмента): V = V сегм ± V кон, «+» - если сегмент меньше,«-» - если сегмент больше полусферы. или V = V сегм + V кон = πh 2 (R - h / 3) + πr 2 (R - h) / 3 . Шаровой слой (R 1 и R 2 - радиусы оснований шарового слоя; h = СК - высота шарового слоя или расстояние между основаниями): V ш/сл = πh 3 / 6 + πh(R 1 2 + R 2 2 ) / 2 ; S ш/сл = 2πRh . Пример 1. Объем шара равен 288π см 3 . Найти диаметр шара. Решение V = πd 3 / 6 288π = πd 3 / 6 πd 3 = 1728π d 3 = 1728 d = 12 см. Ответ: 12. Пример 2. Три равных сферы радиусом r касаются друг друга и некоторой плоскости. Определить радиус четвертой сферы, касающейся трех данных и данной плоскости. Решение Пусть О 1 , О 2 , О 3 - центры данных сфер и О - центр четвертой сферы, касающейся трех данных и данной плоскости. Пусть А, В, С, Т - точки касания сфер с данной плоскостью. Точки касания двух сфер лежат на линии центров этих сфер, поэтому О 1 О 2 = О 2 О 3 = О 3 О 1 = 2r . Точки равноудалены от плоскости АВС , поэтому АВО 2 О 1 , АВО 2 О 3 , АВО 3 О 1 - равные прямоугольники, следовательно, ∆АВС - равносторонний со стороной 2r . Пусть х - искомый радиус четвертой сферы. Тогда ОТ = х . Следовательно, Аналогично Значит, Т - центр равностороннего треугольника. Поэтому Отсюда Ответ: r / 3 . Сфера, вписанная в пирамиду В каждую правильную пирамиду можно вписать сферу. Центр сферы лежит на высоте пирамиды в точке ее пересечения с биссектрисой линейного угла при ребре основания пирамиды. Замечание. Если в пирамиду, необязательно правильную, можно вписать сферу, то радиус r этой сферы можно вычислить по формуле r = 3V / S пп , где V - объем пирамиды, S пп - площадь ее полной поверхности. Пример 3. Коническая воронка, радиус основания которой R , а высота H , наполнена водой. В воронку опущен тяжелый шар. Каким должен быть радиус шара, чтобы объем воды, вытесненный из воронки погруженной частью шара, был максимальным? Решение Проведем сечение через центр конуса. Данное сечение образует равнобедренный треугольник. Если в воронке находится шар, то максимальный размер его радиуса будет равен радиусу вписанной в получившийся равнобедренный треугольник окружности. Радиус вписанной в треугольник окружности равен: r = S / p , где S - площадь треугольника, p - его полупериметр. Площадь равнобедренного треугольника равна половине высоты (H = SO ), умноженной на основание. Но поскольку основание - удвоенный радиус конуса, то S = RH . Полупериметр равен p = 1/2 (2R + 2m) = R + m . m - длина каждой из равных сторон равнобедренного треугольника; R - радиус окружности, составляющей основание конуса. Найдем m по теореме Пифагора: , откуда Кратко это выглядит следующим образом: Ответ: Пример 4. В правильной треугольной пирамиде с двугранным углом при основании, равным α , расположены два шара. Первый шар касается всех граней пирамиды, а второй шар касается всех боковых граней пирамиды и первого шара. Найти отношение радиуса первого шара к радиусу второго шара, если tgα = 24/7 . Решение
Пусть РАВС - правильная пирамида и точка Н - центр ее основания АВС . Пусть М - середина ребра ВС . Тогда - линейный угол двугранного угла , который по условию равен α , причем α < 90° . Центр первого шара, касающегося всех граней пирамиды, лежит на отрезке РН в точке его пересечения с биссектрисой . Пусть НН 1 - диаметр первого шара и плоскость, проходящая через точку Н 1 перпендикулярно прямой РН , пересекает боковые ребра РА, РВ, РС соответственно в точках А 1 , В 1 , С 1 . Тогда Н 1 будет центром правильного ∆А 1 В 1 С 1 , а пирамида РА 1 В 1 С 1 будет подобна пирамиде РАВС с коэффициентом подобия k = РН 1 / РН . Заметим, что второй шар, с центром в точке О 1 , является вписанным в пирамиду РА 1 В 1 С 1 и поэтому отношение радиусов вписанных шаров равно коэффициенту подобия: ОН / ОН 1 = РН / РН 1 . Из равенства tgα = 24/7 находим: Пусть АВ = х . Тогда Отсюда искомое отношение ОН / О 1 Н 1 = 16/9. Ответ: 16/9. Сфера, вписанная в призму Диаметр D сферы, вписанной в призму, равен высоте Н призмы: D = 2R = H . Радиус R сферы, вписанной в призму, равен радиусу окружности, вписанной в перпендикулярное сечение призмы. Если в прямую призму вписана сфера, то в основание этой призмы можно вписать окружность. Радиус R сферы, вписанной в прямую призму, равен радиусу окружности, вписанной в основание призмы. Теорема 1 Пусть в основание прямой призмы можно вписать окружность, и высота Н призмы равна диаметру D этой окружности. Тогда в эту призму можно вписать сферу диаметром D . Центр этой вписанной сферы совпадает с серединой отрезка, соединяющего центры окружностей, вписанных в основания призмы. Доказательство Пусть АВС…А 1 В 1 С 1 … - прямая призма и О - центр окружности, вписанной в ее основание АВС . Тогда точка О равноудалена от всех сторон основания АВС . Пусть О 1 - ортогональная проекция точки О на основание А 1 В 1 С 1 . Тогда О 1 равноудалена от всех сторон основания А 1 В 1 С 1 , и ОО 1 || АА 1 . Отсюда следует, что прямая ОО 1 параллельна каждой плоскости боковой грани призмы, а длина отрезка ОО 1 равна высоте призмы и, по условию, диаметру окружности, вписанной в основание призмы. Значит, точки отрезка ОО 1 равноудалены от боковых граней призмы, а середина F отрезка ОО 1 , равноудаленная от плоскостей оснований призмы, будет равноудалена от всех граней призмы. То есть F - центр сферы, вписанной в призму, и диаметр этой сферы равен диаметру окружности, вписанной в основание призмы. Теорема доказана. Теорема 2 Пусть в перпендикулярное сечение наклонной призмы можно вписать окружность, и высота призмы равна диаметру этой окружности. Тогда в эту наклонную призму можно вписать сферу. Центр этой сферы делит высоту, проходящую через центр окружности, вписанной в перпендикулярное сечение, пополам. Доказательство
Пусть АВС…А 1 В 1 С 1 … - наклонная призма и F - центр окружности радиусом FK , вписанной в ее перпендикулярное сечение. Поскольку перпендикулярное сечение призмы перпендикулярно каждой плоскости ее боковой грани, то радиусы окружности, вписанной в перпендикулярное сечение, проведенные к сторонам этого сечения, являются перпендикулярами к боковым граням призмы. Следовательно, точка F равноудалена от всех боковых граней. Проведем через точку F прямую ОО 1 , перпендикулярную плоскости оснований призмы, пересекающую эти основания в точках О и О 1 . Тогда ОО 1 - высота призмы. Поскольку по условию ОО 1 = 2FK , то F - середина отрезка ОО 1 : FK = ОО 1 / 2 = FО = FО 1 , т.е. точка F равноудалена от плоскостей всех без исключения граней призмы. Значит, в данную призму можно вписать сферу, центр которой совпадает с точкой F - центром окружности, вписанной в то перпендикулярное сечение призмы, которое делит высоту призмы, проходящую через точку F , пополам. Теорема доказана. Пример 5. В прямоугольный параллелепипед вписан шар радиуса 1. Найдите объем параллелепипеда. Решение Нарисуйте вид сверху. Или сбоку. Или спереди. Вы увидите одно и то же - круг, вписанный в прямоугольник. Очевидно, этот прямоугольник будет квадратом, а параллелепипед будет кубом. Длина, ширина и высота этого куба в два раза больше, чем радиус шара. АВ = 2 , а следовательно, объем куба равен 8. Ответ: 8. Пример 6. В правильной треугольной призме со стороной основания, равной , расположены два шара. Первый шар вписан в призму, а второй шар касается одного основания призмы, двух ее боковых граней и первого шара. Найти радиус второго шара. Решение
Пусть АВСА 1 В 1 С 1 - правильная призма и точки Р и Р 1 - центры ее оснований. Тогда центр шара О , вписанного в эту призму, является серединой отрезка РР 1 . Рассмотрим плоскость РВВ 1 . Поскольку призма правильная, то РВ лежит на отрезке BN , который является биссектрисой и высотой ΔАВС . Следовательно, плоскость и является биссекторной плоскостью двугранного угла при боковом ребре ВВ 1 . Поэтому любая точка этой плоскости равноудалена от боковых граней АА 1 ВВ 1 и СС 1 В 1 В . В частности, перпендикуляр ОК , опущенный из точки О на грань АСС 1 А 1 , лежит в плоскости РВВ 1 и равен отрезку ОР . Заметим, что KNPO - квадрат, сторона которого равна радиусу шара, вписанного в данную призму. Пусть О 1 - центр шара, касающегося вписанного шара с центром О и боковых граней АА 1 ВВ 1 и СС 1 В 1 В призмы. Тогда точка О 1 лежит плоскости РВВ 1 , а ее проекция Р 2 на плоскость АВС лежит на отрезке РВ . По условию сторона основания равна

Определение.

Сфера (поверхность шара ) - это совокупность всех точек в трехмерном пространстве, которые находятся на одинаковом расстоянии от одной точки, называемой центром сферы (О).

Сферу можно описать, как объёмную фигуру, которая образуется вращением окружности вокруг своего диаметра на 180° или полуокружности вокруг своего диаметра на 360°.

Определение.

Шар - это совокупность всех точек в трехмерном пространстве, расстояние от которых не превышает определенного расстояния до точки, называемой центром шара (О) (совокупность всех точек трехмерного пространства ограниченных сферой).

Шар можно описать как объёмную фигуру, которая образуется вращением круга вокруг своего диаметра на 180° или полуокружности вокруг своего диаметра на 360°.

Определение. Радиус сферы (шара) (R) - это расстояние от центра сферы (шара) O к любой точке сферы (поверхности шара).

Определение. Диаметр сферы (шара) (D) - это отрезок, соединяющий две точки сферы (поверхности шара) и проходящий через ее центр.

Формула. Объём шара :

V = 4 π R 3 = 1 π D 3
3 6

Формула. Площадь поверхности сферы через радиус или диаметр:

S = 4π R 2 = π D 2

Уравнение сферы

1. Уравнение сферы с радиусом R и центром в начале декартовой системе координат :

x 2 + y 2 + z 2 = R 2

2. Уравнение сферы с радиусом R и центром в точке с координатами (x 0 , y 0 , z 0) в декартовой системе координат :

(x - x 0) 2 + (y - y 0) 2 + (z - z 0) 2 = R 2

Определение. Диаметрально противоположными точками называются любые две точки на поверхности шара (сфере), которые соединены диаметром.

Основные свойства сферы и шара

1. Все точки сферы одинаково удалены от центра.

2. Любое сечение сферы плоскостью является окружностью.

3. Любое сечение шара плоскостью есть кругом.

4. Сфера имеет наибольший объём среди всех пространственных фигур с одинаковой площадью поверхности.

5. Через любые две диаметрально противоположные точки можно провести множество больших окружностей для сферы или кругов для шара.

6. Через любые две точки, кроме диаметрально противоположных точек, можно провести только одну большую окружность для сферы или большой круг для шара.

7. Любые два больших круга одного шара пересекаются по прямой, проходящей через центр шара, а окружности пересекаются в двух диаметрально противоположных точках.

8. Если расстояние между центрами любых двух шаров меньше суммы их радиусов и больше модуля разности их радиусов, то такие шары пересекаются , а в плоскости пересечения образуется круг.


Секущая, хорда, секущая плоскость сферы и их свойства

Определение. Секущая сферы - это прямая, которая пересекает сферу в двух точках. Точки пересечения называются точками протыкания поверхности или точками входа и выхода на поверхности.

Определение. Хорда сферы (шара) - это отрезок, соединяющий две точки сферы (поверхности шара).

Определение. Секущая плоскость - это плоскость, которая пересекает сферу.

Определение. Диаметральная плоскость - это секущая плоскость, проходящая через центр сферы или шара, сеченме образует соответственно большую окружность и большой круг . Большая окружность и большой круг имеют центр, который совпадают с центром сферы (шара).

Любая хорда, проходящая через центр сферы (шара) является диаметром.

Хорда является отрезком секущей прямой.

Расстояние d от центра сферы до секущей всегда меньше чем радиус сферы:

d < R

Расстояние m между секущей плоскостью и центром сферы всегда меньше радиуса R:

m < R

Местом сечения секущей плоскости на сфере всегда будет малая окружность , а на шаре местом сечения будет малый круг . Малая окружность и малый круг имеют свои центры, не совпадающих с центром сферы (шара). Радиус r такого круга можно найти по формуле:

r = √R 2 - m 2 ,

Где R - радиус сферы (шара), m - расстояние от центра шара до секущей плоскости.

Определение. Полусфера (полушар) - это половина сферы (шара), которая образуется при ее сечении диаметральной плоскостью.

Касательная, касательная плоскость к сфере и их свойства

Определение. Касательная к сфере - это прямая, которая касается сферы только в одной точке.

Определение. Касательная плоскость к сфере - это плоскость, которая соприкасается со сферой только в одной точке.

Касательная пряма (плоскость) всегда перпендикулярна радиусу сферы проведенному к точке соприкосновения

Расстояние от центра сферы до касательной прямой (плоскости) равно радиусу сферы.

Определение. Сегмент шара - это часть шара, которая отсекается от шара секущей плоскостью. Основой сегмента называют круг, который образовался в месте сечения. Высотой сегмента h называют длину перпендикуляра проведенного с середины основы сегмента к поверхности сегмента.

Формула. Площадь внешней поверхности сегмента сферы с высотой h через радиус сферы R:

S = 2π Rh

В работе содержится план конспект занятия по теме:"Шар. Сечение шара плоскостью"(конспект достаточно схематичен). Для более полного представления об этом занятии рекомендую просмотреть, прилагающуюся к нему презентацию, опорный конспект, рефлексивные карты, а так же компьютерные тесты. Конспект соответствует новым ФГОС для СПО.

Скачать:

Предварительный просмотр:

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

В истории черпаем мы мудрость, в поэзии – остроумие, в математике – проницательность. Роджер Бэкон Решение трудной математической проблемы можно сравнить с взятием крепости. Наум Яковлевич Виленкин

Составьте по чертежу задачу и решите ее. S B O A 10 см? ?

Составьте по чертежу задачу и решите ее. Угол при вершине осевого сечения конуса равен 60 градусов. Образующая конуса равна 10см. Найдите диаметр конуса и его высоту. S B O A 10см

Решение задачи: Треугольник А S В – равносторонний. У равностороннего треугольника все стороны равны. В нашам случае образующая равна диаметру. Значит диаметр равен 10 см. Треугольник О S В – прямоугольный. По теореме Пифагора: S О= √ S В 2 - ОВ 2 = S B O A

Тема занятия Шар. Сечение шара плоскостью

Цель занятия: Дать определения понятиям шар, сфера и их элементов, выяснить какая фигура лежит в сечении шара плоскостью

ЗАДАЧИ: изучить основные понятия, связанные с шаром и сферой; в ыяснить какие могут получаться фигуры при сечении шара плоскостью, научиться выполнять чертеж шара на плоскости; развивать точность и ясность математической речи, учиться аргументировать выводы;

«Сфера и шар»

Шаром называется тело, которое состоит из всех точек пространства, находящихся на расстоянии, не большем данного (радиус шара), от данной точки (центр шара). Граница шара называется шаровой поверхностью или сферой. Точками сферы являются все точки шара, удалённые от центра на расстояние, равное радиусу. /

т.О – центр сферы; R – радиус сферы; АВ – диаметр сферы – отрезок, соединяющий две точки сферы и проходящий через её центр. А, В – диаметрально противоположные точки шара. А В О R

Шар – тело вращения полукруга вокруг его диаметра как оси /

Сфера – тело вращения полуокружности вокруг его диаметра как оси /

Применение сферы /

Сферическая геометрия нужна не только астрономам, штурманам морских кораблей, самолетов, космических кораблей, которые по звездам определяют свои координаты, но и строителям шахт, метрополитенов, тоннелей, а также при геодезических съёмках больших территорий поверхности Земли, когда становится необходимым учитывать её шарообразность. /

ЗАРЯДКА ДЛЯ ГЛАЗ

Сечения шара плоскостью.

/ http://www.etudes.ru/ru/sketches/

Теорема 1 Всякое сечение шара плоскостью есть круг. Центр этого круга есть основание перпендикуляра, опущенного из центра шара на секущую плоскость. ОО" – перпендикуляр. О" - центр круга – основание перпендикуляра.

Плоскость, проходящая через центр шара, называется диаметральной плоскостью. Сечение шара диаметральной плоскостью называется большим кругом, а сечение сферы - большой окружностью. Сечение шара

Решение задачи 29, с.337:

http://interneturok.ru/ru/school/geometry/11-klass/btela-vraweniya-b/reshenie-zadach-po-teme-sfera-shar?seconds=0&chapter_id=219

Сказка о возникновении шара. Однажды, оставшись один дома, красавец Полукруг долго принаряживался и жеманился перед небольшим в оловянных рамках зеркалом и не мог налюбоваться собою. «Что людям вздумалось расславлять, будто я хорош?- говорил он. – Лгут люди, я совсем не хорош. Почему девушки провозгласили, что лучшего парня и не было еще никогда и не будет никогда на селе Хатанга?». Полукруг знал и слышал все, что про него говорили, и был капризным, как красавец. Он мог целый день любоваться собой перед зеркалом, рассматривая себя со всех сторон. И вдруг случилось чудо, когда Полукруг повернулся перед зеркалом вокруг себя, он увидел в зеркале собственное отражение в форме Шара.

ИЗ ИСТОРИИ ВОЗНИКНОВЕНИЯ Шаром принято называть тело, ограниченное сферой, т.е. шар и сфера – это разные геометрические тела. Однако оба слова « шар» и « сфера» происходят от одного и того же греческого слова « сфайра » - мяч. При этом слово « шар» образовалось от перехода согласных сф в ш. В XI книге «Начал» Евклид определяет шар как фигуру, описанную вращающимся около неподвижного диаметра полукругом. В древности сфера была в большом почёте. Астрономические наблюдения над небесным сводом неизменно вызывали образ сферы. Сфера всегда широко применялось в различных областях науки и техники.

ЗАДАЧИ: изучить основные понятия, связанные с шаром и сферой; формировать навыки решения задач; в ыяснить какие могут получаться фигуры при сечении шара плоскостью; развивать точность и ясность математической речи, учиться аргументировать сделанные выводы; научиться изображать шар на плоскости;

СПАСИБО ЗА УРОК

Предварительный просмотр:

Опорный конспект учебного занятия по теме:

«ШАР. СЕЧЕНИЕ ШАРА ПЛОСКОСТЬЮ»

Тело, которое состоит из всех точек пространства, находящихся на расстоянии, не большем данного, от данной точки называется________________________________.

Эта точка называется____________________________шара.

Данное расстояние это _________________________шара.

Граница шара называется _____________________________________________, или________________________.

Отрезок, соединяющий центр шара с точкой шаровой поверхности- это ___________________________.

Это отрезок, соединяющий две точки шаровой поверхности и, проходящий через центр шара.

Концы любого диаметра называются________________________________________________ точками шара.

Шар является телом вращения. Он получается вращением полукруга вокруг его диметра как оси.

Выполни чертеж шара. Обозначь на нем его центр, проведи и обозначь радиус и диаметр, назови диаметрально противоположные точки шара.

ТЕОРЕМА. Всякое сечение шара плоскостью есть круг. Центр этого круга есть основание перпендикуляра, опущенного из центра шара на секущую плоскость.

Диаметральная плоскость –это плоскость, проходящая через__________________________шара.

Большой круг- это сечение шара______________________________________.

Большая окружность- это сечение ________________________ диаметральной плоскостью.

Рефлексивная карта студент__________________

1. Оцени решение поставленных учебных задач

учебные задачи

Решена

полностью

Решена

частично

Не решена

изучить основные понятия, связанные с шаром и сферой

учиться применять полученные знания при решении задач и доказательстве теорем

познакомиться с историей понятий «шар», «сфера»

выяснить какие могут получаться фигуры при сечении шара плоскостью

развивать умение работать в группе

развивать логическое мышление

формировать навыки

контроля и самоконтроля.

научиться изображать шар на плоскости

развивать точность и ясность математической речи, учиться аргументировать сделанные выводы

2. Оценка личностных приращений.

Планировал

узнать

знаю

Планировал научиться

умею

Определения шара и сферы

Применять ранее полученные знания при решении задач и доказательстве теорем

Знать элементы сферы и шара и их определения

Аргуметировать сделанные предположения

Какие фигуры могут получиться при сечении шара плоскостью

Выполнять чертеж шара и его элементов

Узнать историю терминов «Шар», «Сфера».

Составлять задачи по готовым чертежам

3. Самооценка.

А) Поставь себе оценку, которую ты по своему мнению заслуживаешь за работу на уроке.

Б) Сделай личные выводы

Предварительный просмотр:

Конспект занятия по геометрии в группе 1Д.

Тема занятия: "Шар. Сечение шара плоскостью".

Продолжительность занятия: 45 минут.

Учебник: «Геометрия, 10-11 класс», Погорелов А.В.

На занятии применяются элементы следующих современных образовательных технологий:

  • Групповые технологии
  • Здоровьесберегающие технологии
  • Информационные компьютерные технологии

Концептуальная цель преподавания геометрии: развитие логического и абстрактного мышления, пространственного воображения и исследовательских способностей.

Цель занятия: ввести понятия шара и сферы и их элементов, выяснить какая фигура лежит в сечении шара плоскостью;

Задачи:

Изучить основные понятия, связанные с шаром и сферой; виды взаимного расположения шара и плоскости (сечения шара плоскостью);
- формировать навыки решения задач;

Развивать способности к самостоятельному планированию и организации работы, к самоанализу и способности коррекции собственной деятельности;

Развивать точность и ясность математической речи

Воспитывать познавательный интерес к математике;
- воспитывать информационную культуру и культуру общения;
- воспитывать наблюдательность, самостоятельность, способность к коллективной работе.

Материально-дидактическое оснащение: компьютер, проекционный экран, проектор.

Формы работы: групповая работа, самостоятельная работа.

Тип урока: урок получения новых знаний.

Ход урока

I. Мотивация к началу занятия - 1 мин:

Приветствие.

В истории черпаем мы мудрость,

в поэзии – остроумие,

в математике – проницательность.
Роджер Бэкон

Решение трудной математической проблемы

Можно сравнить с взятием крепости.

Наум Яковлевич Виленкин

Обращаю внимание на раздаточный материал и как с ним работать (Слайд 1)

II. Актуализация знаний учащихся - 7мин.:

а) Выполнение компьютерного теста (9-10 чел. )

б) С обучающимися не занятыми компьютерным тестированием составление и решение задачи по готовому чертежу (оставшаяся часть группы) (Слайд 2-4)

в) обобщение результатов работы и предварительные оценки за урок(тест и решение задачи)

III. Самоопределение к деятельности.

В этом году мы с Вами начали изучать раздел геометрии, который называется стереометрия. Что изучает стереометрия?

  • Посмотрите на стол и назовите какие тела Вы видите?
  • Покажите призмы
  • Покажите цилиндры; конусы
  • Кто знает как называется тело оставшееся на столе?
  • Как Вы думаете какова тема нашего сегодняшнего занятия?
  • Попробуйте сформулировать основную цель нашего занятия.( ввести понятия шара и сферы и их элементов, выяснить какая фигура лежит в сечении шара плоскостью )
  • Какие задачи для достижения этой цели мы себе поставим?

(Слайд 4-6 тема, цель, задачи)

Изучение нового материала – 10 мин:

А)Тема сформулирована, цель и задачи ясны – вперед к новым знаниям.

Давайте вспомним, что в школе называли кругом?

Кто попробует по аналогии дать определение шара, учитывая что это тело пространства? Дают определение шара, радиуса шара, диаметра шара.(по аналогии идет работа со сферой; одновременно студенты заполняют опорный конспект)

Учимся изображать шар и его элементы на плоскости, показывать на чертеже эти элементы, находить предметы шарообразной формы в окружающей обстановке Слайд 7-9

Физминутка для снятия усталости с глаз и стресса

Б)Одной из целей занятия у нас стоит: выяснить какие фигуры могут получаться при сечении шара плоскостью. Сначала вспомним какие сечения могут быть у конуса (демонстрация математического этюда через Интернет)

Подумайте, включите свое пространственное воображение и сделайте предположение о том какие сечения могут быть у шара.

Великий российский математик Лобачевский говорил: « У математики нет авторитетов. Единственный аргумент истинности- довод».

Сформулирует и докажет теорему о сечении шара плоскостью(.....) (10 мин)

Повторение этапов доказательства.

В) история понятий шар и сфера (......)

IV. Закрепление изученного материала - 5мин

Решение задачи.

Работа в парах и проверка при помощи интернет

V Итог занятия. Рефлексия.

Вопросы для закрепления :

  • Что такое шар?
  • Что такое шаровая поверхность или сфера?
  • Что такое радиус, диаметр, хорда шара?
  • Какие точки называются диаметрально противоположными?
  • Что является сечением шара плоскостью, удалённой от центра шара на расстояние, меньшее радиуса шара?
  • Какая плоскость называется диаметральной плоскостью шара?
  • Что такое большой круг, большая окружность?

Заполнение рефлексивной карты, выяснение все ли задачи урока достигнуты.

VI. Домашнее задание 1 мин:

п. 58, 59, № 30, 31

Инструкции по выполнению домашнего задания.


Понравилась статья? Поделиться с друзьями: