Методы моментов максимального правдоподобия. Методы получения оценок

Сущность задачи точечного оценивания параметров

ТОЧЕЧНАЯ ОЦЕНКА ПАРАМЕТРОВ РАСПРЕДЕЛЕНИЯ

Точечная оценка предполагает нахождение единственной числовой величины, которая и принимается за значение параметра. Такую оценку целесообразно определять в тех случаях, когда объем ЭД достаточно велик. Причем не существует единого понятия о достаточном объеме ЭД, его значение зависит от вида оцениваемого параметра (к этому вопросу предстоит вернуться при изучении методов интервальной оценки параметров, а предварительно будем считать достаточной выборку, содержащую не менее чем 10 значений). При малом объеме ЭД точечные оценки могут значительно отличаться от истинных значений параметров, что делает их непригодными для использования.

Задача точечной оценки параметров в типовом варианте постановки состоит в следующем.

Имеется: выборка наблюдений (x 1 , x 2 , …, x n ) за случайной величиной Х . Объем выборки n фиксирован.

Известен вид закона распределения величины Х , например, в форме плотности распределения f(Θ , x), где Θ – неизвестный (в общем случае векторный) параметр распределения. Параметр является неслучайной величиной.

Требуется найти оценку Θ* параметра Θ закона распределения.

Ограничения: выборка представительная.

Существует несколько методов решения задачи точечной оценки параметров, наиболее употребительными из них являются методы максимального (наибольшего) правдоподобия, моментов и квантилей.

Метод предложен Р. Фишером в 1912 г. Метод основан на исследовании вероятности получения выборки наблюдений (x 1 , x 2, …, x n) . Эта вероятность равна

f(х 1 , Θ) f(х 2 , Θ) … f(х п, Θ) dx 1 dx 2 … dx n .

Совместная плотность вероятности

L(х 1 , х 2 …, х n ; Θ) = f(х 1 , Θ) f(х 2 , Θ) … f(х n , Θ), (2.7)

рассматриваемая как функция параметра Θ , называется функцией правдоподобия .

В качестве оценки Θ* параметра Θ следует взять то значение, которое обращает функцию правдоподобия в максимум. Для нахождения оценки необходимо заменить в функции правдоподобия Т на q и решить уравнение

dL/d Θ* = 0.

Для упрощения вычислений переходят от функции правдоподобия к ее логарифму lnL . Такое преобразование допустимо, так как функция правдоподобия – положительная функция, и она достигает максимума в той же точке, что и ее логарифм. Если параметр распределения векторная величина

Θ* =(q 1 , q 2 , …, q n),

то оценки максимального правдоподобия находят из системы уравнений


d ln L(q 1 , q 2 , …, q n) /d q 1 = 0;

d ln L(q 1 , q 2 , …, q n) /d q 2 = 0;

. . . . . . . . .



d ln L(q 1 , q 2 , …, q n) /d q n = 0.

Для проверки того, что точка оптимума соответствует максимуму функции правдоподобия, необходимо найти вторую производную от этой функции. И если вторая производная в точке оптимума отрицательна, то найденные значения параметров максимизируют функцию.

Итак, нахождение оценок максимального правдоподобия включает следующие этапы: построение функции правдоподобия (ее натурального логарифма); дифференцирование функции по искомым параметрам и составление системы уравнений; решение системы уравнений для нахождения оценок; определение второй производной функции, проверку ее знака в точке оптимума первой производной и формирование выводов.

Решение. Функция правдоподобия для выборки ЭД объемом n

Логарифм функции правдоподобия

Система уравнений для нахождения оценок параметров

Из первого уравнения следует:

или окончательно

Таким образом, среднее арифметическое является оценкой максимального правдоподобия для математического ожидания.

Из второго уравнения можно найти

.

Эмпирическая дисперсия является смещенной. После устранения смещения

Фактические значения оценок параметров: m =27,51, s 2 = 0,91.

Для проверки того, что полученные оценки максимизируют значение функции правдоподобия, возьмем вторые производные

Вторые производные от функции ln(L(m,S )) независимо от значений параметров меньше нуля, следовательно, найденные значения параметров являются оценками максимального правдоподобия.

Метод максимального правдоподобия позволяет получить состоятельные, эффективные (если таковые существуют, то полученное решение даст эффективные оценки), достаточные, асимптотически нормально распределенные оценки. Этот метод может давать как смещенные, так и несмещенные оценки. Смещение удается устранить введением поправок. Метод особенно полезен при малых выборках.

В работах, предназначенных для первоначального знакомства с математической статистикой, обычно рассматривают оценки максимального правдоподобия (сокращенно ОМП):

Таким образом, сначала строится плотность распределения вероятностей, соответствующая выборке. Поскольку элементы выборки независимы, то эта плотность представляется в виде произведения плотностей для отдельных элементов выборки. Совместная плотность рассматривается в точке, соответствующей наблюденным значениям. Это выражение как функция от параметра (при заданных элементах выборки) называется функцией правдоподобия. Затем тем или иным способом ищется значение параметра, при котором значение совместной плотности максимально. Это и есть оценка максимального правдоподобия.

Хорошо известно, что оценки максимального правдоподобия входят в класс наилучших асимптотически нормальных оценок. Однако при конечных объемах выборки в ряде задач ОМП недопустимы, т.к. они хуже (дисперсия и средний квадрат ошибки больше), чем другие оценки, в частности, несмещенные. Именно поэтому в ГОСТ 11.010-81 для оценивания параметров отрицательного биномиального распределения используются несмещенные оценки, а не ОМП. Из сказанного следует априорно предпочитать ОМП другим видам оценок можно - если можно - лишь на этапе изучения асимптотического поведения оценок.

В отдельных случаях ОМП находятся явно, в виде конкретных формул, пригодных для вычисления.

В большинстве случаев аналитических решений не существует, для нахождения ОМП необходимо применять численные методы. Так обстоит дело, например, с выборками из гамма-распределения или распределения Вейбулла-Гнеденко. Во многих работах каким-либо итерационным методом решают систему уравнений максимального правдоподобия или впрямую максимизируют функцию правдоподобия.

Однако применение численных методов порождает многочисленные проблемы. Сходимость итерационных методов требует обоснования. В ряде примеров функция правдоподобия имеет много локальных максимумов, а потому естественные итерационные процедуры не сходятся. Для данных ВНИИ железнодорожного транспорта по усталостным испытаниям стали уравнение максимального правдоподобия имеет 11 корней. Какой из одиннадцати использовать в качестве оценки параметра?

Как следствие осознания указанных трудностей, стали появляться работы по доказательству сходимости алгоритмов нахождения оценок максимального правдоподобия для конкретных вероятностных моделей и конкретных алгоритмов.

Однако теоретическое доказательство сходимости итерационного алгоритма - это еще не всё. Возникает вопрос об обоснованном выборе момента прекращения вычислений в связи с достижением требуемой точности. В большинстве случаев он не решен.

Но и это не все. Точность вычислений необходимо увязывать с объемом выборки - чем он больше, тем точнее надо находить оценки параметров, в противном случае нельзя говорить о состоятельности метода оценивания. Более того, при увеличении объема выборки необходимо увеличивать и количество используемых в компьютере разрядов, переходить от одинарной точности расчетов к двойной и далее - опять-таки ради достижения состоятельности оценок.

Таким образом, при отсутствии явных формул для оценок максимального правдоподобия нахождение ОМП натыкается на ряд проблем вычислительного характера. Специалисты по математической статистике позволяют себе игнорировать все эти проблемы, рассуждая об ОМП в теоретическом плане. Однако прикладная статистика не может их игнорировать. Отмеченные проблемы ставят под вопрос целесообразность практического использования ОМП.

Пример 1. В статистических задачах стандартизации и управления качеством используют семейство гамма-распределений. Плотность гамма-распределения имеет вид

Плотность вероятности в формуле (7) определяется тремя параметрами a, b, c , где a >2, b >0. При этом a является параметром формы, b - параметром масштаба и с - параметром сдвига. Множитель 1/Г(а) является нормировочным, он введен, чтобы

Здесь Г(а) - одна из используемых в математике специальных функций, так называемая "гамма-функция", по которой названо и распределение, задаваемое формулой (7),

Подробные решения задач оценивания параметров для гамма-распределения содержатся в разработанном нами государственном стандарте ГОСТ 11,011-83 «Прикладная статистика. Правила определения оценок и доверительных границ для параметров гамма-распределения». В настоящее время эта публикация используется в качестве методического материала для инженерно-технических работников промышленных предприятий и прикладных научно-исследовательских институтов.

Поскольку гамма-распределение зависит от трех параметров, то имеется 2 3 - 1 = 7 вариантов постановок задач оценивания. Они описаны в табл. 1. В табл. 2 приведены реальные данные о наработке резцов до предельного состояния, в часах. Упорядоченная выборка (вариационный ряд) объема n = 50 взята из государственного стандарта. Именно эти данные будут служить исходным материалом для демонстрации тех или иных методов оценивания параметров.

Выбор «наилучших» оценок в определенной параметрической модели прикладной статистики - научно-исследовательская работа, растянутая во времени. Выделим два этапа. Этап асимптотики : оценки строятся и сравниваются по их свойствам при безграничном росте объема выборки. На этом этапе рассматривают такие характеристики оценок, как состоятельность, асимптотическая эффективность и др. Этап конечных объемов выборки: оценки сравниваются, скажем, при n = 10. Ясно, что исследование начинается с этапа асимптотики: чтобы сравнивать оценки, надо сначала их построить и быть уверенными, что они не являются абсурдными (такую уверенность дает доказательство состоятельности).

Пример 2. Оценивание методом моментов параметров гамма-распределения в случае трех неизвестных параметров (строка 7 таблицы 1).

В соответствии с проведенными выше рассуждениями для оценивания трех параметров достаточно использовать три выборочных момента - выборочное среднее арифметическое:

выборочную дисперсию

и выборочный третий центральный момент

Приравнивая теоретические моменты, выраженные через параметры распределения, и выборочные моменты, получаем систему уравнений метода моментов:

Решая эту систему, находим оценки метода моментов. Подставляя второе уравнение в третье, получаем оценку метода моментов для параметра сдвига:

Подставляя эту оценку во второе уравнение, находим оценку метода моментов для параметра формы:

Наконец, из первого уравнения находим оценку для параметра сдвига:

Для реальных данных, приведенных выше в табл. 2, выборочное среднее арифметическое = 57,88, выборочная дисперсия s 2 = 663,00, выборочный третий центральный момент m 3 = 14927,91. Согласно только что полученным формулам оценки метода моментов таковы: a * = 5,23; b * = 11,26, c * = - 1,01.

Оценки параметров гамма-распределения, полученные методом моментов, являются функциями от выборочных моментов. В соответствии со сказанным выше они являются асимптотически нормальными случайными величинами. В табл. 3 приведены оценки метода моментов и их асимптотические дисперсии при различных вариантах сочетания известных и неизвестных параметров гамма-распределения.

Все оценки метода моментов, приведенные в табл. 3, включены в государственный стандарт. Они охватывают все постановки задач оценивания параметров гамма-распределения (см. табл. 1), кроме тех, когда неизвестен только один параметр - a или b . Для этих исключительных случаев разработаны специальные методы оценивания.

Поскольку асимптотическое распределение оценок метода моментов известно, то не представляет труда формулировка правил проверки статистических гипотез относительно значений параметров распределений, а также построение доверительных границ для параметров. Например, в вероятностной модели, когда все три параметра неизвестны, в соответствии с третьей строкой таблицы 3 нижняя доверительная граница для параметра а , соответствующая доверительной вероятности г = 0,95, в асимптотике имеет вид

а верхняя доверительная граница для той же доверительной вероятности такова

где а * - оценка метода моментов параметра формы (табл. 3).

Пример 3. Найдем ОМП для выборки из нормального распределения, каждый элемент которой имеет плотность

Таким образом, надо оценить двумерный параметр (m , у 2).

Произведение плотностей вероятностей для элементов выборки, т.е. функция правдоподобия, имеет вид

Требуется решить задачу оптимизации

Как и во многих иных случаях, задача оптимизации проще решается, если прологарифмировать функцию правдоподобия, т.е. перейти к функции

называемой логарифмической функцией правдоподобия. Для выборки из нормального распределения

Необходимым условием максимума является равенство 0 частных производных от логарифмической функции правдоподобия по параметрам, т.е.

Система (10) называется системой уравнений максимального правдоподобия. В общем случае число уравнений равно числу неизвестных параметров, а каждое из уравнений выписывается путем приравнивания 0 частной производной логарифмической функции правдоподобия по тому или иному параметру.

При дифференцировании по m первые два слагаемых в правой части формулы (9) обращаются в 0, а последнее слагаемое дает уравнение

Следовательно, оценкой m * максимального правдоподобия параметра m является выборочное среднее арифметическое,

Для нахождения оценки дисперсии необходимо решить уравнение

Легко видеть, что

Следовательно, оценкой (у 2)* максимального правдоподобия для дисперсии у 2 с учетом найденной ранее оценки для параметра m является выборочная дисперсия,

Итак, система уравнений максимального правдоподобия решена аналитически, ОМП для математического ожидания и дисперсии нормального распределения - это выборочное среднее арифметическое и выборочная дисперсия. Отметим, что последняя оценка является смещенной.

Отметим, что в условиях примера 3 оценки метода максимального правдоподобия совпадают с оценками метода моментов. Причем вид оценок метода моментов очевиден и не требует проведения каких-либо рассуждений.

Пример 4. Попытаемся проникнуть в тайный смысл следующей фразы основателя современной статистики Рональда Фишера: “нет ничего проще, чем придумать оценку параметра”. Классик иронизировал: он имел в виду, что легко придумать плохую оценку. Хорошую оценку не надо придумывать (!) - ее надо получать стандартным образом, используя принцип максимального правдоподобия.

Задача. Согласно H 0 математические ожидания трех независимых пуассоновских случайных величин связаны линейной зависимостью: .

Даны реализации этих величин. Требуется оценить два параметра линейной зависимости и проверить H 0 .

Для наглядности можно представить линейную регрессию, которая в точках принимает средние значения. Пусть получены значения. Что можно сказать о величине и справедливости H 0 ?

Наивный подход

Казалось бы, оценить параметры можно из элементарного здравого смысла. Оценку наклона прямой регрессии получим, поделив приращение при переходе от x 1 =-1 к x 3 =+1 на, а оценку значения найдем как среднее арифметическое:

Легко проверить, что математические ожидания оценок равны (оценки несмещенные).

После того как оценки получены, H 0 проверяют как обычно с помощью хи-квадрат критерия Пирсона:

Оценки ожидаемых частот можно получить, исходя из оценок:

При этом, если наши оценки ”правильные”, то расстояние Пирсона будет распределено как случайная величина хи-квадрат с одной степенью свободы: 3-2=1. Напомним, что мы оцениваем два параметра, подгоняя данные под нашу модель. При этом сумма не фиксирована, поэтому дополнительную единицу вычитать не нужно.

Однако, подставив, получим странный результат:

С одной стороны ясно, что для данных частот нет оснований отвергать H 0 , но мы не в состоянии это проверить с помощью хи-квадрат критерия, так как оценка ожидаемой частоты в первой точке оказывается отрицательной. Итак, найденные из “здравого смысла” оценки не позволяют решить задачу в общем случае.

Метод максимального правдоподобия

Случайные величины независимы и имеют пуассоновское распределение. Вероятность получить значения равна:

Согласно принципу максимального правдоподобия значения неизвестных параметров надо искать, требуя, чтобы вероятность получить значения была максимальной:

Если постоянны, то мы имеем дело с обычной вероятностью. Фишер предложил новый термин “правдоподобие” для случая, когда постоянны, а переменными считаются. Если правдоподобие оказывается произведением вероятностей независимых событий, то естественно превратить произведение в сумму и дальше иметь дело с логарифмом правдоподобия:

Здесь все слагаемые, которые не зависят от, обозначены и в окончательном выражении отброшены. Чтобы найти максимум логарифма правдоподобия, приравняем производные по к нулю:

Решая эти уравнения, получим:

Таковы “правильные” выражения для оценок. Оценка среднего значения совпадает с тем, что предлагал здравый смысл, однако оценки для наклона различаются: . Что можно сказать по поводу формулы для?

  • 1) Кажется странным, что ответ зависит от частоты в средней точке, так как величина определяет угол наклона прямой.
  • 2) Тем не менее, если справедлива H 0 (линия регрессии - прямая), то при больших значениях наблюдаемых частот, они становятся близки к своим математическим ожиданием. Поэтому: , и оценка максимального правдоподобия становится близка к результату, полученному из здравого смысла.

3) Преимущества оценки начинают ощущаться, когда мы замечаем, что все ожидаемые частоты теперь оказываются всегда положительными:

Это было не так для “наивных” оценок, поэтому применить хи-квадрат критерий можно было не всегда (попытка заменить отрицательную или равную нулю ожидаемую частоту на единицу не спасает положения).

4) Численные расчеты показывают, что наивными оценками можно пользоваться только, если ожидаемые частоты достаточно велики. Если использовать их при малых значениях, то вычисленное расстояние Пирсона часто будет оказываться чрезмерно большим.

Вывод : Правильный выбор оценки важен, так как в противном случае проверить гипотезу с помощью критерия хи-квадрат не удастся. Оценка, казалось бы, очевидная может оказаться непригодной!

Метод максимального правдоподобия (ММП) является одним из наиболее широко используемых методов в статистике и эконометрике. Для его применения необходимо знание закона распределения исследуемой случайной величины.

Пусть имеется некоторая случайная величина У с заданным законом распределения ДУ). Параметры этого закона неизвестны и их нужно найти. В общем случае величину Y рассматривают как многомерную, т.е. состоящую из нескольких одномерных величин У1, У2, У3 ..., У.

Предположим, что У – одномерная случайная величина и ее отдельные значения являются числами. Каждое из них (У],у 2, у3, ...,у„) рассматривается как реализация не одной случайной величины У, а η случайных величин У1; У2, У3 ..., У„. То есть:

уj – реализация случайной величины У];

у2 – реализация случайной величины У2;

уз – реализация случайной величины У3;

у„ – реализация случайной величины У„.

Параметры закона распределения вектора У, состоящего из случайных величин Y b Y 2, У3,У„, представляют как вектор Θ, состоящий из к параметров: θχ, θ2,в к. Величины Υ ν Υ 2, У3,..., Υ η могут быть распределены как с одинаковыми параметрами, так и с различными; некоторые параметры могут совпадать, а другие различаться. Конкретный ответ на этот вопрос зависит от той задачи, которую решает исследователь.

Например, если стоит задача определения параметров закона распределения случайной величины У, реализацией которой являются величины У1; У2, У3, У,„ то предполагают, что каждая из этих величин распределена так же, как величина У. Иначе говоря, любая величина У, описывается одним и тем же законом распределения/(У, ), причем с одними и теми же параметрами Θ: θχ, θ2,..., д к.

Другой пример – нахождение параметров уравнения регрессии. В этом случае каждая величина У, рассматривается как случайная величина, имеющая "собственные" параметры распределения, которые могут частично совпадать с параметрами распределения других случайных величин, а могут и полностью различаться. Более подробно применение ММП для нахождения параметров уравнения регрессии будет рассмотрено ниже.

В рамках метода максимального правдоподобия совокупность имеющихся значений У], у2, у3, ...,у„ рассматривается как некоторая фиксированная, неизменная. То есть закон /(У;) есть функция от заданной величиныу, и неизвестных параметров Θ. Следовательно, для п наблюдений случайной величины У имеется п законов /(У;).

Неизвестные параметры этих законов распределения рассматриваются как случайные величины. Они могут меняться, однако приданном наборе значений Уі,у2,у3, ...,у„ наиболее вероятны конкретные значения параметров. Иначе говоря, вопрос ставится таким образом: каковы должны быть параметры Θ, чтобы значения уj, у2, у3, ...,у„ были наиболее вероятны?

Для ответа на него нужно найти закон совместного распределения случайных величин У1; У2, У3,..., Уп –КУі, У 2, Уз, У„). Если предположить, что наблюдаемые нами величиныу^ у2,у3, ...,у„ независимы, то он равен произведению п законов/

(У;) (произведению вероятностей появления данных значений для дискретных случайных величин или произведению плотностей распределения для непрерывных случайных величин):

Чтобы подчеркнуть тот факт, что в качестве переменных рассматриваются искомые параметры Θ, введем в обозначение закона распределения еще один аргумент – вектор параметров Θ:

С учетом введенных обозначений закон совместного распределения независимых величин с параметрами будет записан в виде

(2.51)

Полученную функцию (2.51) называют функцией максимального правдоподобия и обозначают :

Еще раз подчеркнем тот факт, что в функции максимального правдоподобия значения У считаются фиксированными, а переменными являются параметры вектора (в частном случае – один параметр). Часто для упрощения процесса нахождения неизвестных параметров функцию правдоподобия логарифмируют, получая логарифмическую функцию правдоподобия

Дальнейшее решение по ММП предполагает нахождение таких значений Θ, при которых функция правдоподобия (или ее логарифм) достигает максимума. Найденные значения Θ; называют оценкой максимального правдоподобия.

Методы нахождения оценки максимального правдоподобия достаточно разнообразны. В простейшем случае функция правдоподобия является непрерывно дифференцируемой и имеет максимум в точке, для которой

В более сложных случаях максимум функции максимального правдоподобия не может быть найден путем дифференцирования и решения уравнения правдоподобия, что требует поиска других алгоритмов его нахождения, в том числе итеративных.

Оценки параметров, полученные с использованием ММП, являются:

  • состоятельными , т.е. с увеличением объема наблюдений разница между оценкой и фактическим значением параметра приближается к нулю;
  • инвариантными : если получена оценка параметра Θ, равная 0L, и имеется непрерывная функция q(0), то оценкой значения этой функции будет величина q(0L). В частности, если с помощью ММП мы оценили величину дисперсии какого-либо показателя (af ), то корень из полученной оценки будет оценкой среднего квадратического отклонения (σ,), полученной по ММП.
  • асимптотически эффективными ;
  • асимптотически нормально распределенными.

Последние два утверждения означают, что оценки параметров, полученные по ММП, проявляют свойства эффективности и нормальности при бесконечно большом увеличении объема выборки.

Для нахождения параметров множественной линейной регрессии вида

необходимо знать законы распределения зависимых переменных 7; или случайных остатков ε,. Пусть переменная Y t распределена по нормальному закону с параметрами μ, , σ, . Каждое наблюдаемое значение у, имеет, в соответствии с определением регрессии, математическое ожидание μ, = МУ„ равное его теоретическому значению при условии, что известны значения параметров регрессии в генеральной совокупности

где xfl, ..., x ip – значения независимых переменных в і -м наблюдении. При выполнении предпосылок применения МНК (предпосылок построения классической нормальной линейной модели), случайные величины У, имеют одинаковую дисперсию

Дисперсия величины определяется по формуле

Преобразуем эту формулу:

При выполнении условий Гаусса – Маркова о равенстве нулю математического ожидания случайных остатков и постоянстве их дисперсий можно перейти от формулы (2.52) к формуле

Иначе говоря, дисперсии случайной величины У,- и соответствующих ей случайных остатков совпадают.

Выборочную оценку математического ожидания случайной величины Yj будем обозначать

а оценку ее дисперсии (постоянной для разных наблюдений) как Sy.

Если предположить независимость отдельных наблюдений y it то получим функцию максимального правдоподобия

(2.53)

В приведенной функции делитель является константой и не оказывает влияния на нахождение ее максимума. Поэтому для упрощения расчетов он может быть опущен. С учетом этого замечания и после логарифмирования функция (2.53) примет вид

В соответствии с ММП найдем производные логарифмической функции правдоподобия по неизвестным параметрам

Для нахождения экстремума приравняем полученные выражения к нулю. После преобразований получим систему

(2.54)

Эта система соответствует системе, полученной по методу наименьших квадратов. То есть ММП и МНК дают одинаковые результаты, если соблюдаются предпосылки МНК. Последнее выражение в системе (2.54) дает оценку дисперсии случайной переменной 7, или, что одно и то же, дисперсии случайных остатков. Как было отмечено выше (см. формулу (2.23)), несмещенная оценка дисперсии случайных остатков равна

Аналогичная оценка, полученная с применением ММП (как следует из системы (2.54)), вычисляется по формуле

т.е. является смещенной .

Мы рассмотрели случай применения ММП для нахождения параметров линейной множественной регрессии при условии, что величина У, нормально распределена. Другой подход к нахождению параметров той же регрессии заключается в построении функции максимального правдоподобия для случайных остатков ε,. Для них также предполагается нормальное распределение с параметрами (0, σε). Нетрудно убедиться, что результаты решения в этом случае совпадут с результатами, полученными выше.

Метод максимального правдоподобия.

Этот метод состоит в том, что в качестве точечной оценки параметра принимается то значение параметра , при котором функция правдоподобия достигает своего максимума.

Для случайной наработки до отказа с плотностью вероятности f(t, ) функция правдоподобия определяется формулой 12.11: , т.е. представляет из себя совместную плотность вероятности независимых измерений случайной величины τ с плотностью вероятности f(t, ).

Если случайная величина дискретна и принимает значения Z 1 ,Z 2 …, соответственно с вероятностями P 1 (α),P 2 (α)…, , то функция правдоподобия берётся в ином виде, а именно: , где индексы у вероятностей показывают, что наблюдались значения .

Оценки максимального правдоподобия параметра определяются из уравнения правдоподобия (12.12).

Значение метода максимального правдоподобия выясняется следующими двумя предположениями:

Если для параметра существует эффективная оценка , то уравнение правдоподобия (12.12) имеет единственное решение .

При некоторых общих условиях аналитического характера, наложенных на функции f(t, ) решение уравнения правдоподобия сходится при к истинному значению параметра .

Рассмотрим пример использования метода максимального правдоподобия для параметров нормального распределения.

Пример:

Имеем: , , t i (i=1..N) выборка из совокупности с плотностью распределения .

Требуется найти оценку максимального подобия.

Функция правдоподобия: ;

.

Уравнения правдоподобия: ;

;

Решение этих уравнений имеет вид: - статистическое среднее; - статистическая дисперсия. Оценка является смещённой. Не смещённой оценкой будет оценка: .

Основным недостатком метода максимального правдоподобия являются вычислительные трудности, возникающие при решение уравнений правдоподобия, которые, как правило, являются трансцендентными.

Метод моментов.

Этот метод предложен К.Пирсоном и является самым первым общим методом точечной оценки неизвестных параметров. Он до сих пор широко используется в практической статистике, поскольку нередко приводит к сравнительно несложной вычислительной процедуре. Идея этого метода состоит в том, что моменты распределения зависящие от неизвестных параметров, приравниваются к эмпирическим моментам. Взяв число моментов, равное числу неизвестных параметров, и составив соответствующие уравнения, мы получим необходимое число уравнений. Чаще всего вычисляются первые два статистических момента: выборочное среднее ; и выборочная дисперсия . Оценки, получаемые с помощью метода моментов, не являются наилучшими с точки зрения их эффективности. Однако очень часто они используются в качестве первых приближений.

Рассмотрим пример использования метода моментов.

Пример: Рассмотрим экспоненциальное распределение:

t>0; λ<0; t i (i=1..N) – выборка из совокупности с плотностью распределения . Требуется найти оценку для параметра λ.

Составляем уравнение: . Таким образом, иначе .

Метод квантилей.

Это такой же эмпирический метод, как и метод моментов. Он состоит в том, что квантиль теоретического распределения приравниваются к эмпирической квантили. Если оценке подлежат несколько параметров, то соответствующие равенства пишутся для нескольких квантилей.

Рассмотрим случай, когда закон распределения F(t,α,β) с двумя неизвестными параметрами α, β . Пусть функция F(t,α,β ) имеет непрерывно дифференцируемую плотность , принимающую положительные значения для любых возможных значений параметров α, β. Если испытания проводить по плану , r>>1 , то момент появления - го отказа можно рассматривать как эмпирическую квантиль уровня , i=1,2 … , - эмпирическая функция распределения. Если бы t l и t r – моменты появления l-го и r-го отказов известны точно, значения параметров α и β можно было бы найти из уравнений

До сих пор мы считали, что оценка неизвестного параметра известна и занимались изучением ее свойств с целью использования их при построении доверительного интервала. В этом параграфе рассмотрим вопрос о способах построения оценок.

Методы правдоподобия

Пусть требуется оценить неизвестный параметр, вообще говоря, векторный, . При этом предполагается, что вид функции распределения известен с точностью до параметра,

В таком случае все моменты случайной величины становятся функциями от:

Метод моментов требует выполнения следующих действий:

Вычисляем k «теоретических» моментов

По выборке строим k одноименных выборочных моментов. В излагаемом контексте это будут моменты

Приравнивая «теоретические» и одноименные им выборочные моменты, приходим к системе уравнений относительно компонент оцениваемого параметра

Решая полученную систему (точно или приближенно), находим исходные оценки. Они, конечно, являются функциями от выборочных значений.

Мы изложили порядок действий, исходя из начальных - теоретических и выборочных - моментов. Он сохраняется при ином выборе моментов, начальных, центральных или абсолютных, который определяется удобством решения системы (25.1) или ей подобной.

Перейдем к рассмотрению примеров.

Пример 25.1. Пусть случайная величина распределена равномерно на отрезке [ ; ] , где - неизвестные параметры. По выборке () объема n из распределения случайной величины. Требуется оценить и.

В данном случае распределение определяется плотностью

1) Вычислим первые два начальных «теоретических» момента:

2) Вычислим по выборке два первых начальных выборочных момента

3) Составим систему уравнений

4) Из первого уравнения выразим через

и подставим во второе уравнение, в результате чего придём к квадратному уравнению

решая которое, находим два корня

Соответствующие значения таковы

Поскольку по смыслу задачи должно выполнятся условие < , выбираем в качестве решения системы и оценок неизвестных параметров

Замечая, что есть не что иное, как выборочная дисперсия, получаем окончательно

Если бы мы выбрали в качестве «теоретических» моментов математическое ожидание и дисперсию, то пришли бы к системе (с учетом неравенства <)

которая линейна и решается проще предыдущей. Ответ, конечно, совпадает с уже полученным.

Наконец, отметим, что наши системы всегда имеет решение и при том единственное. Полученные оценки, конечно, состоятельны, однако свойствам несмещенности не обладают.

Метод максимального правдоподобия

Изучается, как и прежде, случайная величина, распределение которой задается либо вероятностями её значений, если дискретна, либо плотностью распределения, если непрерывна, где - неизвестный векторный параметр. Пусть () - выборка значений. Естественно в качестве оценки взять то значение параметра, при котором вероятность получения уже имеющейся выборки максимальна.

Выражение

называют функцией правдоподобия , она представляет собой совместное распределение или совместную плотность случайного вектора с n независимыми координатами, каждая из которых имеет то же распределение (плотность), что и.

В качестве оценки неизвестного параметра берется такое его значение, которое доставляет максимум функции, рассматриваемой как функции от при фиксированных значениях. Оценку называют оценкой максимального правдоподобия . Заметим, что зависит от объема выборки n и выборочных значений

и, следовательно, сама является случайной величиной.

Отыскание точки максимума функции представляет собой отдельную задачу, которая облегчается, если функция дифференцируема по параметру.

В этом случае удобно вместо функции рассматривать её логарифм, поскольку точки экстремума функции и её логарифма совпадают.

Методы дифференциального исчисления позволяют найти точки, подозрительные на экстремум, а затем выяснить, в какой из них достигается максимум.

С этой целью рассматриваем вначале систему уравнений

решения которой - точки, подозрительные на экстремум. Затем по известной методике, вычисляя значения вторых производных

по знаку определителя, составленного из этих значений, находим точку максимума.

Оценки, полученные по методу максимального правдоподобия, состоятельны, хотя могут оказаться смещенными.

Рассмотрим примеры.

Пример 25.2. Пусть производится некоторый случайный эксперимент, исходом которого может быть некоторое события А, вероятность Р(А) которого неизвестна и подлежит оцениванию.

Введем случайную величину равенством

если событие А произошло,

если событие А не произошло (произошло событие).

Распределение случайной величины задается равенством

Выборкой в данном случае будет конечная последовательность (), где каждое из может быть равно 0 либо 1.

Функция правдоподобия будет иметь вид

Найдем точку её максимума по р, для чего вычислим производную логарифма

Обозначим - это число равно количеству единиц «успехов» в выбранной последовательности.

Понравилась статья? Поделиться с друзьями: