Построение проекций точек на чертеже. Проекции точки на три плоскости проекций. Различные положения прямой


Эта статья является ответом на два вопроса: «Что такое » и «Как найти координаты проекции точки на плоскость »? Сначала дана необходимая информация о проецировании и его видах. Далее приведено определение проекции точки на плоскость и дана графическая иллюстрация. После этого получен метод нахождения координат проекции точки на плоскость. В заключении разобраны решения примеров, в которых вычисляются координаты проекции заданной точки на заданную плоскость.

Навигация по странице.

Проецирование, виды проецирования – необходимая информация.

При изучении пространственных фигур удобно пользоваться их изображениями на чертеже. Чертеж пространственной фигуры представляет собой так называемую проекцию этой фигуры на плоскость. Процесс построения изображения пространственной фигуры на плоскости происходит по определенным правилам. Так вот процесс построения изображения пространственной фигуры на плоскости вместе с набором правил, по которым осуществляется этот процесс, называется проецированием фигуры на данную плоскость. Плоскость, в которой строится изображение, называют плоскостью проекции .

В зависимости от правил, по которым осуществляется проецирование, различают центральное и параллельное проецирование . Вдаваться в подробности не станем, так как это выходит за рамки этой статьи.

В геометрии в основном используется частный случай параллельного проецирования - перпендикулярное проецирование , которое также называют ортогональным . В названии этого вида проецирования прилагательное «перпендикулярное» часто опускается. То есть, когда в геометрии говорят о проекции фигуры на плоскость, то обычно подразумевают, что эта проекция была получена с помощью перпендикулярного проецирования (если, конечно, не оговорено другое).

Следует отметить, что проекция фигуры на плоскость представляет собой совокупность проекций всех точек этой фигуры на плоскость проекции. Иными словами, чтобы получить проекцию некоторой фигуры необходимо уметь находить проекции точек этой фигуры на плоскость. В следующем пункте статьи как раз показано, как найти проекцию точки на плоскость.

Проекция точки на плоскость – определение и иллюстрация.

Еще раз подчеркнем, что мы будем говорить о перпендикулярной проекции точки на плоскость.

Выполним построения, которые помогут нам дать определение проекции точки на плоскость.

Пусть в трехмерном пространстве нам задана точка М 1 и плоскость . Проведем через точку М 1 прямую a , перпендикулярную к плоскости . Если точка М 1 не лежит в плоскости , то обозначим точку пересечения прямой a и плоскости как H 1 . Таким образом, точка H 1 по построению является основанием перпендикуляра, опущенного из точки M 1 на плоскость .

Определение.

Проекция точки М 1 на плоскость - это сама точка М 1 , если , или точка H 1 , если .

Данному определению проекции точки на плоскость эквивалентно следующее определение.

Определение.

Проекция точки на плоскость – это либо сама точка, если она лежит в заданной плоскости, либо основание перпендикуляра, опущенного из этой точки на заданную плоскость.

На приведенном ниже чертеже точка H 1 есть проекция точки М 1 на плоскость ; точка М 2 лежит в плоскости , поэтому М 2 – проекция самой точки М 2 на плоскость .

Нахождение координат проекции точки на плоскость – решения примеров.

Пусть в трехмерном пространстве введена Oxyz , задана точка и плоскость . Поставим перед собой задачу: определить координаты проекции точки М 1 на плоскость .

Решение задачи логически следует из определения проекции точки на плоскость.

Обозначим проекцию точки М 1 на плоскость как H 1 . По определению проекции точки на плоскость, H 1 – это точка пересечения заданной плоскости и прямой a , проходящей через точку М 1 перпендикулярно к плоскости . Таким образом, искомые координаты проекции точки М 1 на плоскость - это координаты точки пересечения прямой a и плоскости .

Следовательно, чтобы найти координаты проекции точки на плоскость нужно:

Рассмотрим решения примеров.

Пример.

Найдите координаты проекции точки на плоскость .

Решение.

В условии задачи нам дано общее уравнение плоскости вида , так что его составлять не нужно.

Напишем канонические уравнения прямой a , которая проходит через точку М 1 перпендикулярно к заданной плоскости. Для этого получим координаты направляющего вектора прямой a . Так как прямая a перпендикулярна к заданной плоскости, то направляющим вектором прямой a является нормальный вектор плоскости . То есть, - направляющий вектор прямой a . Теперь мы можем написать канонические уравнения прямой в пространстве , которая проходит через точку и имеет направляющий вектор :
.

Чтобы получить требуемые координаты проекции точки на плоскость, осталось определить координаты точки пересечения прямой и плоскости . Для этого от канонических уравнений прямой переходим к уравнениям двух пересекающихся плоскостей , составляем систему уравнений и находим ее решение. Используем :

Таким образом, проекция точки на плоскость имеет координаты .

Ответ:

Пример.

В прямоугольной системе координат Oxyz в трехмерном пространстве заданы точки и . Определите координаты проекции точки М 1 на плоскость АВС .

Решение.

Напишем сначала уравнение плоскости, проходящей через три заданные точки :

Но давайте рассмотрим альтернативный подход.

Получим параметрические уравнения прямой a , которая проходит через точку и перпендикулярна к плоскости АВС . Нормальный вектор плоскости имеет координаты , следовательно, вектор является направляющим вектором прямой a . Теперь мы можем написать параметрические уравнения прямой в пространстве , так как знаем координаты точки прямой () и координаты ее направляющего вектора ():

Осталось определить координаты точки пересечения прямой и плоскости . Для этого в уравнение плоскости подставим :
.

Теперь по параметрическим уравнениям вычислим значения переменных x , y и z при :
.

Таким образом, проекция точки М 1 на плоскость АВС имеет координаты .

Ответ:

В заключении давайте обсудим нахождение координат проекции некоторой точки на координатные плоскости и плоскости, параллельные координатным плоскостям.

Проекциями точки на координатные плоскости Oxy , Oxz и Oyz являются точки с координатами и соответственно. А проекциями точки на плоскости и , которые параллельны координатным плоскостям Oxy , Oxz и Oyz соответственно, являются точки с координатами и .

Покажем, как были получены эти результаты.

Для примера найдем проекцию точки на плоскость (остальные случаи аналогичны этому).

Эта плоскость параллельна координатной плоскости Oyz и - ее нормальный вектор. Вектор является направляющим вектором прямой, перпендикулярной к плоскости Oyz . Тогда параметрические уравнения прямой, проходящей через точку М 1 перпендикулярно к заданной плоскости, имеют вид .

Найдем координаты точки пересечения прямой и плоскости . Для этого сначала подставляем в уравнение равенства : , и проекция точки

  • Бугров Я.С., Никольский С.М. Высшая математика. Том первый: элементы линейной алгебры и аналитической геометрии.
  • Ильин В.А., Позняк Э.Г. Аналитическая геометрия.
  • Точка, как математическое понятие, не имеет размеров. Очевидно, если объект проецирования является нульмерным объектом, то говорить о его проецировании бессмысленно.

    Рис.9 Рис.10

    В геометрии под точкой целесообразно принимать физический объект, имеющий линейные измерения. Условно за точку можно принять шарик с бесконечно малым радиусом. При такой трактовке понятия точки можно говорить о ее проекциях.

    При построении ортогональных проекций точки следует руководствоваться первым инвариантным свойством ортогонального проецирования: ортогональная проекция точки есть точка.

    Положение точки в пространстве определяется тремя координатами: X, Y, Z, показывающие величины расстояний, на которые точка удалена от плоскостей проекций. Чтобы определить эти расстояния, достаточно определить точки встречи этих прямых с плоскостями проекций и измерить соответствующие величины, которые укажут соответственно значения абсциссы X , ординаты Y и аппликаты Z точки (рис. 10).

    Проекцией точки является основание перпендикуляра, опущенного из точки на соответствующую плоскость проекций. Горизонтальной проекцией точки а называют прямоугольную проекцию точки на горизонтальной плоскости проекций, фронтальной проекцией а / – соответственно на фронтальной плоскости проекций и профильной а // – на профильной плоскости проекций.

    Прямые Аа, Аa / и Аa // называются проецирующими прямыми. При этом прямую Аа, проецирующую точку А на горизонтальную плоскость проекций, называют горизонтально- проецирующей прямой, Аa / и Аa // - соответственно: фронтально и профильно-проецирущими прямыми.

    Две проецирующие прямые, проходящие через точку А определяют плоскость, которую принято называть проецирующей.

    При преобразовании пространственного макета, фронтальная проекция точки А – а / остается на месте, как принадлежащая плоскости, которая не менят своего положения при рассматриваемом преобразовании. Горизонтальная проекция – а вместе с горизонтальной плоскостью проекции повернется понаправлению движения часовой стрелки и расположится на одном перепендикуляре к оси Х с фронтальной проекцией. Профильная проекция - a // будет вращаться вместе с профильной плоскостью и к концу преобразования займет положение, указанное на рисунке 10. При этом - a // будет принадлежать перпендикуляру к оси Z , проведенному из точки а / и будет удалена от оси Z на такое же расстояние, на какое горизонтальная проекция а удалена от оси Х . Поэтому связь между горизонтально и профильной проекциями точки может быть установлена с помощью двух ортогональных отрезков аа y и а y a // и сопрягающей их дуги окружности с центром в точке пересечения осей (О – начало координат). Отмеченной связью пользуются для нахождения недостающей проекции (при двух заданных). Положение профильной (горизонтальной) проекции по заданным горизонтальной (профильной) и фронтальной проекциям может быть найдено с помощью прямой, проведенной под углом 45 0 из начала координат к оси Y (эту биссектрису называют прямой k – постоянной Монжа). Первый из указанных способов предпочтителен, как более точный.


    Из этого следует:

    1. Точка в пространстве удалена:

    от горизонтальной плоскости H Z,

    от фронтальной плоскости V на величину заданной координаты Y,

    от профильной плоскости W на величину координаты.X.

    2. Две проекции любой точки принадлежат одному перпендикуляру (одной линии связи):

    горизонтальная и фронтальная – перпендикуляру к оси X,

    горизонтальная и профильная – перпендикуляру к оси Y,

    фронтальная и профильная – перпендикуляру к оси Z.

    3. Положение точки в пространстве вполне определяется положением ее двух ортогональных проекций. Из этого следует – по двум любым заданным ортогональным проекциям точки всегда иожно построить недостающую ее третью проекцию.


    Если точка имеет три определенные координаты, то такую точку называют точкой общего положения. Если у точки одна или две координаты имеют нулевое значение, то такую точку называют точкой частного положения.

    Рис. 11 Рис. 12

    На рисунке 11 дан пространственный чертеж точек частного положения, на рисунке 12 – комплексных чертеж (эпюр) этих точек. Точка А принадлежит фронтальной плоскости проекций, точка В – горизонтальной плоскости проекций, точка С – профильной плоскости проекций и точка D – оси абсцисс (Х ).

    Вспомогательная прямая комплексного чертежа

    На чертеже, представленном на рис. 4.7, а, проведены оси проекций, а изображения соединены между собой линиями связи. Горизонтальная и профильная проекции соединены линиями связи с помощью дуг с центром в точке О пересечения осей. Однако в практике применяют и другое выполнение комплексного чертежа.

    На безосных чертежах изображения располагают также в проекционной связи. Однако третья проекция может быть помещена ближе или дальше. Например, профильная проекция может быть размещена правее (рис. 4.7, б, II ) или левее (рис. 4.7, б, I ). Это важно для экономии места и удобства нанесения размеров.

    Рис. 4.7.

    Если на чертеже, выполненном по безосной системе, требуется провести между видом сверху и видом слева линии связи, то применяют вспомогательную прямую комплексного чертежа. Для этого примерно на уровне вида сверху и немного правее его проводят прямую под утлом 45° к рамке чертежа (рис. 4.8, а ). Она называется вспомогательной прямой комплексного чертежа. Порядок построения чертежа с помощью этой прямой показан на рис. 4.8, б, в.

    Если три вида уже построены (рис. 4.8, г), то положение вспомогательной прямой выбирать произвольно нельзя. Сначала нужно найти точку, через которую она пройдет. Для этого достаточно продолжить до взаимного пересечения оси симметрии горизонтальной и профильной проекций и через полученную точку k провести под углом 45° отрезок прямой (рис. 4.8, д ). Если осей симметрии нет, то продолжают до пересечения в точке k 1 горизонтальную и профильные проекции любой грани, проецирующейся в виде прямой (рис. 4.8, д ).

    Рис. 4.8.

    Необходимость в проведении линий связи, а следовательно, и вспомогательной прямой возникает при построении недостающих проекций и при выполнении чертежей, на которых требуется определить проекции точек, чтобы уточнить проекции отдельных элементов детали.

    Примеры использования вспомогательной прямой даны в следующем параграфе.

    Проекции точки, лежащей на поверхности предмета

    Для того чтобы при выполнении чертежей правильно строить проекции отдельных элементов детали, необходимо уметь находить на всех изображениях чертежа проекции отдельных точек. Например, трудно вычертить горизонтальную проекцию детали, представленной на рис. 4.9, не пользуясь проекциями отдельных точек (А, В, C, D, E и др.). Умение находить все проекции точек, ребер, граней необходимо и для воссоздания в воображении формы предмета по его плоским изображениям на чертеже, а также для проверки правильности выполненного чертежа.

    Рис. 4.9.

    Рассмотрим способы нахождения второй и третьей проекций точки, заданной на поверхности предмета.

    Если на чертеже предмета дана одна проекция точки, то прежде надо найти проекции поверхности, на которой расположена эта точка. Затем выбирают один из двух описанных ниже приемов решения задачи.

    Первый способ

    Этот способ применяется, когда хотя бы на одной из проекций данная поверхность изображается в виде линии.

    На рис. 4.10, а изображен цилиндр, на фронтальной проекции которого задана проекция а" точки А, лежащей на видимой части его поверхности (заданные проекции отмечены двойными цветными окружностями). Чтобы найти горизонтальную проекцию точки А, рассуждают так: точка лежит на поверхности цилиндра, горизонтальная проекция которой – окружность. Значит, и проекция точки, лежащей на этой поверхности, будет лежать на окружности. Проводят линию связи и на пересечении ее с окружностью отмечают искомую точку а. Третью проекцию а"

    Рис. 4.10.

    Если же точка В, лежащая на верхнем основании цилиндра, задана своей горизонтальной проекцией b, то проводят линии связи до пересечения с отрезками прямых, изображающих фронтальную и профильную проекции верхнего основания цилиндра.

    На рис. 4.10, б представлена деталь – упор. Чтобы построить проекции точки А, заданной своей горизонтальной проекцией а, находят две другие проекции верхней грани (на которой лежит точка А ) и, проведя линии связи до пересечения с отрезками прямых, изображающих эту грань, определяют искомые проекции – точки а" и а". Точка В лежит на левой боковой вертикальной грани, значит, и ее проекции будут лежать на проекциях этой грани. Поэтому из заданной точки b" проводят линии связи (как указано стрелками) до встречи их с отрезками прямых, изображающих эту грань. Фронтальную проекцию с" точки С, лежащей на наклонно расположенной (в пространстве) грани, находят на линии, изображающей эту грань, а профильную с" – на пересечении линии связи, так как профильная проекция этой грани не линия, а фигура. Построение проекций точки D показано стрелками.

    Второй способ

    Этот способ применяют, когда первым способом пользоваться нельзя. Тогда следует поступить так:

    • провести через заданную проекцию точки проекцию вспомогательной линии, расположенной на данной поверхности;
    • найти вторую проекцию этой линии;
    • на найденную проекцию линии перенести заданную проекцию точки (этим будет определена вторая проекция точки);
    • найти третью проекцию (если это требуется) на пересечении линий связи.

    На рис. 4.10, в дана фронтальная проекция а" точки А, лежащей на видимой части поверхности конуса. Для нахождения горизонтальной проекции через точку а" проводят фронтальную проекцию вспомогательной прямой, проходящей через точку А и вершину конуса. Получают точку V – проекцию точки встречи проведенной прямой с основанием конуса. Имея фронтальные проекции точек, лежащих на прямой, можно найти их горизонтальные проекции. Горизонтальная проекция s вершины конуса известна. Точка b лежит на окружности основания. Через эти точки проводят отрезок прямой и переносят на него (как показано стрелкой) точку а", получая точку а. Третья проекция а" точки А находится на пересечении линии связи.

    Эту же задачу можно решить иначе (рис. 4.10, г ).

    В качестве вспомогательной линии, проходящей через точку А, берут не прямую, как в первом случае, а окружность. Эта окружность образуется, если в точке А пересечь конус плоскостью, параллельной основанию, как показано на наглядном изображении. Фронтальная проекция этой окружности изобразится отрезком прямой, так как плоскость окружности перпендикулярна фронтальной плоскости проекций. Горизонтальная проекция окружности имеет диаметр, равный длине этого отрезка. Описав окружность указанного диаметра, проводят из точки а" линию связи до пересечения со вспомогательной окружностью, так как горизонтальная проекция а точки А лежит на вспомогательной линии, т.е. на построенной окружности. Третью проекцию aс" точки А находят на пересечении линий связи.

    Таким же приемом можно найти проекции точки, лежащей на поверхности, например, пирамиды. Разница будет в том, что при ее пересечении горизонтальной плоскостью образуется не окружность, а фигура, подобная основанию.

    Для построения изображений ряда деталей необходимо уметь находить проекции отдельных точек. Например, трудно вычертить вид сверху детали, приведенной на рис. 139, не строя горизонтальных проекций точек А, В, С, D, Е, F и др.

    Задача нахождения проекций точек по одной, заданной на поверхности предмета, решается следующим образом. Сначала находят проекции поверхности, на которой расположена точка. Затем, проведя линию связи к проекции, где поверхность изображается линией, находят вторую проекцию точки. Третья проекция лежит на пересечении линий связи.

    Рассмотрим пример.

    Даны три проекции детали (рис. 140, а). Задана горизонтальная проекция а точки А, лежащей на видимой поверхности. Нужно найти остальные проекции этой точки.

    Прежде всего надо провести вспомогательную прямую. Если даны два вида, то место вспомогательной прямой на чертеже выбирают произвольно, правее вида сверху, так чтобы вид слева оказался на нужном расстоянии от главного вида (рис. 141).

    Если три вида уже построены (рис. 142, а), то место вспомогательной прямой произвольно выбирать нельзя; нужно найти точку, через которую она пройдет. Для этого достаточно продолжить до взаимного пересечения горизонтальную и профильную проекции оси симметрии и через полученную точку k (рис. 142, б) провести под углом 45° отрезок прямой, который и будет вспомогательной прямой.

    Если осей симметрии нет, то продолжают до пересечения в точке k 1 горизонтальную и профильную проекции любой грани, проецирующейся в виде отрезков прямой (рис. 142, б).

    Проведя вспомогательную прямую, приступают к построению проекций точки (см. рис. 140, б).

    Фронтальная а" и профильная а" проекции точки А должны располагаться на соответствующих проекциях поверхности, которой принадлежит точка А. Находят эти проекции. На рис. 140, б они выделены цветом. Проводят линии связи, как указано стрелками. В местах пересечения линий связи с проекциями поверхности находятся искомые проекции а" и а".

    Построение проекций точек В, С, D показано на рис. 140, в линиями связи со стрелками. Заданные проекции точек цветные. Линии связи проводят к той проекции, на которой поверхность изображается в виде линии, а не в виде фигуры. Поэтому сначала находят фронтальную проекцию с" точки С. Профильная проекция с точки С определяется пересечением линий связи.

    Если поверхность ни на одной проекции не изображается линией, то для построения проекций точек надо применять вспомогательную плоскость. Например, дана фронтальная проекция d точки А, лежащей на поверхности конуса (рис. 143, а). Через точку параллельно основанию проводят вспомогательную плоскость, которая пересечет конус по окружности; ее фронтальная проекция - отрезок прямой, а горизонтальная - окружность диаметром, равным длине этого отрезка (рис. 143, б). Проведя к этой окружности из точки а" линию связи, получают горизонтальную проекцию а точки А.

    Профильную проекцию а" точки А находят обычным способом на пересечении линий связи.

    Таким же приемом можно найти проекции точки, лежащей, например, на поверхности пирамиды или шара. При пересечении пирамиды плоскостью, параллельной основанию и проходящей через заданную точку, образуется фигура, подобная основанию. На проекциях этой фигуры лежат проекции заданной точки.

    Ответьте на вопросы


    1. Под каким углом проводят вспомогательную прямую?

    2. Где проводят вспомогательную прямую, если заданы виды спереди и сверху, а надо построить вид слева?

    3. Как определить место вспомогательной прямой при наличии трех видов?

    4. В чем заключается способ построения проекций точки по одной заданной, если одна из поверхностей предмета изображается линией?

    5. Для каких геометрических тел и в каких случаях проекции точки, заданной на их поверхности, находят, пользуясь вспомогательной плоскостью?

    Задания к § 20

    Упражнение 68


    Запишите в рабочей тетради, каким проекциям точек, обозначенных на видах цифрами, соответствуют точки, обозначенные на наглядном изображении буквами в примере, указанном Вам преподавателем (рис. 144, а-г).

    Упражнение 69


    На рис. 145, а-б буквами обозначено лишь по одной проекции некоторых из вершин. Найдите в примере, указанном Вам преподавателем, остальные проекции этих вершин и обозначьте их буквами. Постройте в одном из примеров недостающие проекции точек, заданных на ребрах предмета (рис. 145, г и д). Выделите цветом проекции ребер, на" которых находятся точки. Задание выполните на прозрачной бумаге, наложив ее на страницу учебника. Перечерчивать рис. 145 не надо.

    Упражнение 70


    Найдите недостающие проекции точек, заданных одной проекцией на видимых поверхностях предмета (рис. 146). Обозначьте их буквами. Заданные проекции точек выделите цветом. Решить задание Вам поможет наглядное изображение. Задание можно выполнить как в рабочей тетради, так и на прозрачной бумаге, наложив ее на страницу учебника. В последнем случае перечерчивать рис. 146 не надо.

    Упражнение 71


    В примере, указанном Вам преподавателем, перечертите три вида (рис. 147). Постройте недостающие проекции точек, заданных на видимых поверхностях предмета. Заданные проекции точек выделите цветом. Обозначьте буквами все проекции точек. Для построения проекций точек воспользуйтесь вспомогательной прямой. Выполните технический рисунок и нанесите на нем заданные точки.

    ПРОЕЦИРОВАНИЕ ТОЧКИ НА ДВЕ ПЛОСКОСТИ ПРОЕКЦИЙ

    Образование отрезка прямой линии АА 1 можно представить как результат перемещения точки А в какой-либо плоскости Н (рис. 84, а), а образование плоскости - как перемещение отрезка прямой линии АВ (рис. 84, б).

    Точка - основной геометрический элемент линии и поверхности, поэтому изучение прямоугольного проецирования предмета начинается с построения прямоугольных проекций точки.

    В пространство двугранного угла, образованного двумя перпендикулярными плоскостями - фронтальной (вертикальной) плоскостью проекций V и горизонтальной плоскостью проекций Н, поместим точку А (рис. 85, а).

    Линия пересечения плоскостей проекций - прямая, которая называется осью проекций и обозначается буквой х.

    Плоскость V здесь изображена в виде прямоугольника, а плоскость Н - в виде параллелограмма. Наклонную сторону этого параллелограмма обычно проводят под углом 45° к его горизонтальной стороне. Длина наклонной стороны берется равной 0,5 ее действительной длины.

    Из точки А опускают перпендикуляры на плоскости V и Н. Точки а"и а пересечения перпендикуляров с плоскостями проекций V и Н являются прямоугольными проекциями точки А. Фигура Ааа х а" в пространстве - прямоугольник. Сторона аах этого прямоугольника на наглядном изображении уменьшается в 2 раза.

    Совместим плоскости Н с плоскостью V ,вращая V вокруг линии пересечения плоскостей х. В результате получается комплексный чертеж точки А (рис. 85, б)

    Для упрощения комплексного чертежа границы плоскостей проекций V и Н не указывают (рис. 85, в).

    Перпендикуляры, проведенные из точки А к плоскостям проекций, называются проецирующими линиями, а основания этих проецирующих линий - точки а и а" - называются проекциями точки А: а" - фронтальная проекция точки А, а - горизонтальная проекция точки А.

    Линия а" а называется вертикальной линией проекционной связи.

    Расположение проекции точки на комплексном чертеже зависит от положения этой точки в пространстве.

    Если точка А лежит на горизонтальной плоскости проекций Н (рис. 86, а), то ее горизонтальная проекция а совпадает с заданной точкой, а фронтальная проекция а" располагается на оси При расположении точки В на фронтальной плоскости проекций V ее фронтальная проекция совпадает с этой точкой, а горизонтальная проекция лежит на оси х. Горизонтальная и фронтальная проекции заданной точки С, лежащей на оси х, совпадают с этой точкой. Комплексный чертеж точек А, В и С показан на рис. 86, б.

    ПРОЕЦИРОВАНИЕ ТОЧКИ НА ТРИ ПЛОСКОСТИ ПРОЕКЦИЙ

    В тех случаях, когда по двум проекциям нельзя представить себе форму предмета, его проецируют на три плоскости проекций. В этом случае вводится профильная плоскость проекций W, перпендикулярная плоскостям V и Н. Наглядное изображение системы из трех плоскостей проекций дано на рис. 87, а.

    Ребра трехгранного угла (пересечение плоскостей проекций) называются осями проекций и обозначаются x, у и z. Пересечение осей проекций называется началом осей проекций и обозначается буквой О. Опустим из точки А перпендикуляр на плоскость проекций W и, отметив основание перпендикуляра буквой а", получим профильную проекцию точки А.

    Для получения комплексного чертежа точки А плоскости Н и W совмещают с плоскостью V, вращая их вокруг осей Ох и Oz. Комплексный чертеж точки А показан на рис. 87, б и в.

    Отрезки проецирующих линий от точки А до плоскостей проекций называются координатами точки А и обозначаются: х А, у А и z A .

    Например, координата z A точки А, равная отрезку а"а х (рис. 88, а и б), есть расстояние от точки А до горизонтальной плоскости проекций Н. Координата у точки А, равная отрезку аа х, есть расстояние от точки А до фронтальной плоскости проекций V. Координата х А, равная отрезку аа у - расстояние от точки А до профильной плоскости проекций W.

    Таким образом, расстояние между проекцией точки и осью проекции определяют координаты точки и являются ключом к чтению ее комплексного чертежа. По двум проекциям точки можно определить все три координаты точки.

    Если заданы координаты точки А (например, х А =20 мм, у А =22мм и z A = 25 мм), то можно построить три проекции этой точки.

    Для этого от начала координат О по направлению оси Oz откладывают вверх координату z A и вниз координату у А.Из концов отложенных отрезков - точек a z и а у (рис. 88, а) - проводят прямые, параллельные оси Ох, и на них откладывают отрезки, равные координате х А. Полученные точки а" и а - фронтальная и горизонтальная проекции точки А.

    По двум проекциям а" и а точки А построить ее профильную проекцию можно тремя способами:

    1) из начала координат О проводят вспомогательную дугу радиусом Оа у, равным координате (рис. 87, б и в), из полученной точки а у1 проводят прямую, параллельную оси Oz, и откладывают отрезок, равный z A ;

    2) из точки а у проводят вспомогательную прямую под углом 45° к оси Оу (рис. 88, а), получают точку а у1 и т. д.;

    3) из начала координат О проводят вспомогательную прямую под углом 45° к оси Оу (рис. 88, б), получают точку а у1 и т. д.

    Понравилась статья? Поделиться с друзьями: