Осевой момент инерции стержня. Вычисление моментов инерции

Приложение. Момент инерции и его вычисление.

Пусть твёрдое тело вращается вокруг оси Z (рисунок 6). Его можно представить как неизменную с течением времени систему разных материальных точек m i , каждая из которых движется по окружности радиусом r i , лежащей в плоскости, перпендикулярной оси Z. Угловые скорости всех материальных точек одинаковы. Моментом инерции тела относительно оси Z называется величина:

где – момент инерции отдельной материальной точки относительно оси ОZ. Из определения вытекает, что момент инерции – аддитивная величина , т. е. момент инерции тела, состоящего из отдельных частей, равен сумме моментов инерции частей.

Рисунок 6

Очевидно, [I ] = кг×м 2 . Важность понятия момента инерции выражается в трёх формулах:

; ; .

Первая из них выражает момент импульса тела, которое вращается вокруг неподвижной оси Z (полезно эту формулу сравнить с выражением для импульса тела P = mV c , где V c – скорость центра масс). Вторая формула носит название основного уравнения динамики вращательного движения тела вокруг неподвижной оси, т.е., иначе говоря, второго закона Ньютона для вращательного движения (сравним с законом движения центра масс: ). Третья формула выражает кинетическую энергию тела, вращающегося вокруг неподвижной оси (сравним с выражением для кинетической энергии частицы ). Сравнение формул позволяет сделать вывод о том, что момент инерции во вращательном движении играет роль, аналогичную массе в том смысле, что чем больше момент инерции тела, тем меньше угловое ускорение при прочих равных условиях оно приобретает (тело, образно говоря, труднее раскрутить). Реально вычисление моментов инерции сводится к вычислению тройного интеграла и может быть произведено лишь для ограниченного числа симметричных тел и лишь для осей симметрии. Количество осей, вокруг которых может вращаться тело, бесконечно велико. Среди всех осей выделяется та, которая проходит через замечательную точку тела – центр масс (точку, для описания движения которой достаточно представить, что вся масса системы сосредоточена в центре масс и к этой точке приложена сила, равная сумме всех сил). Но осей, проходящих через центр масс, также бесконечно много. Оказывается, что для любого твёрдого тела произвольной формы существуют три взаимно перпендикулярных оси С х, С у, С z , называемые осями свободного вращения , обладающие замечательным свойством: если тело закрутить вокруг любой из этих осей и подбросить вверх, то при последующем движении тела ось останется параллельной самой себе, т.е. не будет кувыркаться. Закручивание вокруг любой другой оси этим свойством не обладает. Значение моментов инерции типичных тел относительно указанных осей приведено ниже. Если ось проходит через центр масс, но составляет углы a, b, g с осями С х, С у, С z соответственно, то момент инерции относительно такой оси равен

I c = I cx cos 2 a + I cy cos 2 b + I cz cos 2 g (*)

Рассмотрим кратко вычисление момента инерции для простейших тел.

1. Момент инерции длинного тонкого однородного стержня относительно оси, проходящей через центр масс стержня и ему перпендикулярной.

Пусть т – масса стержня, l – его длина.

,

Индекс «с » у момента инерции I c означает, что это момент инерции относительно оси, проходящий через точку центра масс (центр симметрии тела), C(0,0,0).

2. Момент инерции тонкой прямоугольной пластинки.

; ;

3. Момент инерции прямоугольного параллелепипеда.


, т. С(0,0,0)

4. Момент инерции тонкого кольца.

;

, т. С(0,0,0)

5. Момент инерции тонкого диска.

В силу симметрии

; ;

6. Момент инерции сплошного цилиндра.

;

В силу симметрии:


7. Момент инерции сплошного шара.

, т. С(0,0,0)

8. Момент инерции сплошного конуса.


, т. С(0,0,0)

где R – радиус основания, h – высота конуса.

Напомним, что cos 2 a + cos 2 b + cos 2 g = 1. Наконец, если ось О не проходит через центр масс, то момент инерции тела может быть вычислен с помощью теоремы Гюйгенса Штейнера

I о = I с + md 2 , (**)

где I о – момент инерции тела относительно произвольной оси, I с – момент инерции относительно параллельной ей оси, проходящей через центр масс,
m
– масса тела, d – расстояние между осями.

Процедура вычисления моментов инерции для тел стандартной формы относительно произвольной оси сводится к следующему.

Момент инерции тела относительно оси и относительно точки. Момент инерции материальной точки относительно оси равен произведению массы точки на квадрат расстояния точки до оси. Чтобы найти момент инерции тела (с непрерывным распределением вещества) относительно оси, надо мысленно разбить его на такие малые элементы, чтобы каждый из них можно было считать материальной точкой бесконечно малой массыdm = dV . Тогда момент инерции тела относительно оси равен интегралу по объёму тела:

где r – расстояние элементаdm до оси.

Вычисление момента инерции тела относительно оси часто упрощается, если предварительно вычислить его момент инерции относительно точки . Он вычисляется по формуле, аналогичной (1):

(2)

где r – расстояние элементаdm до выбранной точки (относительно которой вычисляется). Пусть эта точка является началом системы координатX , Y , Z (рис. 1). Квадраты расстояний элементаdm до координатных осейX , Y , Z и до начала координат равны соответственноy 2 + z 2 , z 2 + x 2 , x 2 + y 2 , x 2 + y 2 + z 2 . Моменты инерции тела относительно осейX , Y , Z и относительно начала координат

Из этих соотношений следует, что

Таким образом, сумма моментов инерции тела относительно трёх любых взаимно перпендикулярных осей, проходящих через одну точку, равна удвоенному моменту инерции тела относительно этой точки.

Момент инерции тонкого кольца. Все элементы кольцаdm (рис. 2) находятся на одинаковом расстоянии, равном радиусу кольцаR , от его оси симметрии (осьY) и от его центра. Момент инерции кольца относительно осиY

(4)

Момент инерции тонкого диска. Пусть тонкий однородный диск массыm с концентрическим отверстием (рис. 3) имеет внутренний и внешний радиусыR 1 иR 2 . Мысленно разобьём диск на тонкие кольца радиусаr , толщиныdr . Момент инерции такого кольца относительно осиY (рис. 3, она перпендикулярна рисунку и не показана), в соответствии с (4):

Момент инерции диска:

(6)

В частности, полагая в (6) R 1 = 0, R 2 = R , получим формулу для вычисления момента инерции тонкого сплошного однородного диска относительно его оси:

Момент инерции диска относительно его оси симметрии не зависит от толщины диска . Поэтому по формулам (6) и (7) можно вычислять моменты инерции соответствующих цилиндров относительно их осей симметрии.

Момент инерции тонкого диска относительно его центра также вычисляется по формуле (6), = J y , а моменты инерции относительно осейX иZ равны между собой,J x = J z . Поэтому, в соответствии с (3): 2 J x + J y = 2 J y , J x = J y /2, или

(8)

Момент инерции цилиндра. Пусть имеется полый симметричный цилиндр массыm , длины h , внутренний и внешний радиусы которого равныR 1 и R 2 . Найдём его момент инерции относительно осиZ , проведенной через центр масс перпендикулярно оси цилиндра (рис. 4). Для этого мысленно разобьём его на диски бесконечно малой толщиныdy . Один из таких дисков, массойdm = mdy / h , расположенный на расстоянииy от начала координат, показан на рис. 4. Его момент инерции относительно осиZ , в соответствии с (8) и теоремой Гюйгенса – Штейнера

Момент инерции всего цилиндра

Момент инерции цилиндра относительно оси Z (оси вращения маятника) найдём по теореме Гюйгенса – Штейнера

где d – расстояние от центра масс цилиндра до осиZ . В работе 16 этот момент инерции обозначен какJ ц

(11)

МЕТОД НАИМЕНЬШИХ КВАДРАТОВ

Нанесение экспериментальных точек и проведение по ним графика «на глаз», а также определение по графику абсцисс и ординат точек, не отличаются высокой точностью. Её можно повысить, если использовать аналитический метод. Математическое правило построения графика заключается в подборе таких значений параметров «а» и «в» в линейной зависимости вида у = ах + b , чтобы сумма квадратов отклонений у i (рис. 5) всех экспериментальных точек от линии графика была наименьшей (метод «наименьших квадратов» ), т.е. чтобы величина

(1)

Рассмотрим теперь проблему определения момента инерции различных тел. Общая формула для нахождения момента инерции объекта относительно оси имеет вид

,

Иными словами, нужно сложить все массы, умножив каждую из них на квадрат ее расстояния до оси . Заметьте, что это верно даже для трехмерного тела, несмотря на то, что расстояние имеет такой «двумерный вид». Впрочем, в большинстве случаев мы будем ограничиваться двумерными телами.

В качестве простого примера рассмотрим стержень, вращающийся относительно оси, проходящей через его конец и перпендикулярной к нему (фиг. 19.3). Нам нужно просуммировать теперь все массы, умноженные на квадраты расстояния (в этом случае все - нулевые). Под суммой, разумеется, я имею в виду интеграл от , умноженный на «элементики» массы. Если мы разделим стержень на кусочки длиной , то соответствующий элемент массы будет пропорционален , а если бы составляло длину всего стержня, то его масса была бы равна . Поэтому

. (19.5)

Размерность момента инерции всегда равна массе, умноженной на квадрат длины, так что единственная существенная величина, которую мы вычислили, это множитель .

Фиг. 19.3. Прямой стержень, вращающийся вокруг оси, проходящей черед один из его концов.

А чему будет равен момент инерции , если ось вращения проходит через середину стержня? Чтобы найти его, нам снова нужно взять интеграл, но уже в пределах от до . Заметим, однако, одну особенность этого случая. Такой стержень с проходящей через центр осью можно представлять себе как два стержня с осью, проходящей через конец, причем масса каждого из них равна , а длина равна . Моменты инерции двух таких стержней равны друг другу и вычисляются по формуле (19.5). Поэтому момент инерции всего стержня равен

. (19.6)

Таким образом, стержень гораздо легче крутить за середину, чем за конец.

Можно, конечно, продолжить вычисление моментов инерции других интересующих нас тел. Но поскольку такие расчеты требуют большого опыта в вычислении интегралов (что очень важно само по себе), они как таковые не представляют для нас большого интереса. Впрочем, здесь имеются некоторые очень интересные и полезные теоремы. Пусть имеется какое-то тело и мы хотим узнать его момент инерции относительно какой-то оси. Это означает, что мы хотим найти его инертность при вращении вокруг этой оси. Если мы будем двигать тело за стержень, подпирающий его центр масс так, чтобы оно не поворачивалось при вращении вокруг оси (в этом случае на него не действуют никакие моменты сил инерции, поэтому тело не будет поворачиваться, когда мы начнем двигать его), то для того, чтобы повернуть его, понадобится точно такая же сила, как если бы вся масса была сосредоточена в центре масс и момент инерции был бы просто равен , где - расстояние от центра масс до оси вращения. Однако формула эта, разумеется, неверна. Она не дает правильного момента инерции тела. Ведь в действительности при повороте тело вращается. Крутится не только центр масс (что давало бы величину ), само тело тоже должно поворачиваться относительно центра масс. Таким образом, к моменту инерции нужно добавить - момент инерции относительно центра масс. Правильный ответ состоит в том, что момент инерции относительно любой оси равен

Эта теорема называется теоремой о параллельном переносе оси. Доказывается она очень легко. Момент инерции относительно любой оси равен сумме масс, умноженных на сумму квадратов и , т. е. . Мы сейчас сосредоточим наше внимание на , однако все в точности можно повторить и для . Пусть координата есть расстояние данной частной точки от начала координат; посмотрим, однако, как все изменится, если мы будем измерять расстояние от центра масс вместо от начала координат. Чтобы это выяснить, мы должны написать

Возводя это выражение в квадрат, находим

.

Что получится, если умножить его на и просуммировать по всем ? Вынося постоянные величины за знак суммирования, находим

.

Третью сумму подсчитать легко; это просто . Второй член состоит из двух сомножителей, один из которых ; он равен -координате центра масс. Но это должно быть равно нулю, ведь отсчитывается от центра масс, а в этой системе координат среднее положение всех частиц, взвешенное их массами, равно нулю. Первый же член, очевидно, представляет собой часть от . Таким образом, мы и приходим к формуле (19.7).

Давайте проверим формулу (19.7) на одном примере. Просто проверим, будет ли она применима для стержня. Мы уже нашли, что момент инерции стержня относительно его конца должен быть равен . А центр масс стержня, разумеется, находится на расстоянии . Таким образом, мы должны получить, что . Так как одна четвертая + одна двенадцатая = одной третьей, то мы не сделали никакой грубой ошибки.

Кстати, чтобы найти момент инерции (19.5), вовсе не обязательно вычислять интеграл. Можно просто предположить, что он равен величине , умноженной на некоторый неизвестный коэффициент . После этого можно использовать рассуждения о двух половинках и для момента инерции (19.6) получить коэффициент . Используя теперь теорему о параллельном переносе оси, докажем, что , откуда . Всегда можно найти какой-нибудь окольный путь!

При применении теоремы о параллельных осях важно помнить, что ось должна быть параллельна оси, относительно которой мы хотим вычислять момент инерции.

Стоит, пожалуй, упомянуть еще об одном свойстве, которое часто бывает очень полезно при нахождении момента инерции некоторых типов тел. Оно состоит в следующем: если у нас есть плоская фигура и тройка координатных осей с началом координат, расположенным в этой плоскости, и осью , направленной перпендикулярно к ней, то момент инерции этой фигуры относительно оси равен сумме моментов инерции относительно осей и . Доказывается это совсем просто. Заметим, что

(поскольку все ). Аналогично,

,

Момент инерции однородной прямоугольной пластинки, например с массой , шириной и длиной относительно оси, перпендикулярной к ней и проходящей через ее центр, равен просто

,

поскольку момент инерции относительно оси, лежащей в плоскости пластинки и параллельной ее длине, равен , т. е. точно такой же, как и для стержня длиной , а момент инерции относительно другой оси в той же плоскости равен , такой же, как и для стержня длиной .

Итак, перечислим свойства момента инерции относительно данной оси, которую мы назовем осью :

1. Момент инерции равен

.

2. Если предмет состоит из нескольких частей, причем момент инерции каждой из них известен, то полный момент инерции равен сумме моментов инерции этих частей.

3. Момент инерции относительно любой данной оси равен моменту инерции относительно параллельной оси, проходящей через центр масс, плюс произведение полной массы на квадрат расстояния данной оси от центра масс.

4. Момент инерции плоской фигуры относительно оси, перпендикулярной к ее плоскости, равен сумме моментов инерций относительно любых двух других взаимно перпендикулярных осей, лежащих в плоскости фигуры и пересекающихся с перпендикулярной осью.

В табл. 19.1 приведены моменты инерции некоторых элементарных фигур, имеющих однородную плотность масс, а в табл. 19.2 - моменты инерции некоторых фигур, которые могут быть получены из табл. 19.1 с использованием перечисленных выше свойств.

Таблица 19.1 Простые примеры моментов инерции

Тонкий стержень длиной

Проходит через центр перпендикулярно к стержню

Тонкое концентрическое кольцо с радиусами и

Проходит через центр кольца перпендикулярно к плоскости кольца

Сфера радиуса

Проходит через центр

Таблица 19.2 Моменты инерции, полученные из табл. 19.1

Прямоугольник со сторонами и Прямоугольный параллелепипед со сторонами Проходит через центр параллельно

Тела относительно какой-либо оси можно найти вычислением. Если вещество в теле распределено непрерывно, то вычисление момента инерции его сводится к вычислению интеграла

в котором r - расстояние от элемента массы dm до оси вращения.

Момент инерции тонкого однородного стержня относительно перпендикулярной оси. Пусть ось проходит через конец стержня А (рис. 4.4).

Для момента инерции можно написать I A = kml 2 , где l - длина стержня, k - коэффициент пропорциональности. Центр стержня С является его центром масс. По теореме Штейнера I A = I C + m (l /2) 2 . Величину I C можно представить как сумму моментов инерции двух стержней, СА и СВ , длина каждого из которых равна l /2, масса m /2, а следовательно, момент инерции равен Таким образом, I C = km (l/ 2) 2 . Подставляя эти выражения в формулу для теоремы Штейнера, получим

,

откуда k = 1/3. В результате находим

(4.16)

Момент инерции бесконечно тонкого круглого кольца (окружности). Момент инерции относительно оси Z (рис. 4.5) равен

I Z = mR 2 , (4.17)

где R - радиус кольца. Ввиду симметрии I X = I У .

Формула (4.17) очевидно, дает также момент инерции полого однородного цилиндра с бесконечно тонкими стенками относительно его геометрической оси.

Рис. 4.5 Рис. 4.6

Момент инерции бесконечно тонкого диска и сплошного цилиндра. Предполагается, что диск и цилиндр однородны, т. е. вещество распределено в них с постоянной плотностью. Пусть ось Z проходит через центр диска С перпендикулярно к его плоскости (рис. 4.6). Рассмотрим бесконечно тонкое кольцо с внутренним радиусом r и наружным радиусом r + dr . Площадь такого кольца dS = 2 prdr . Его момент инерции найдется по формуле (4.17), он равен dI z = r 2 dm. Момент инерции всего диска определяется интегралом Ввиду однородности диска dm = , где S = pR 2 - площадь всего диска. Вводя это выражение под знак интеграла, получим

(4.18)

Формула (4.18) дает также момент инерции однородного сплошного цилиндра относительно его продольной геометрической оси.

Вычисление момента инерции тела относительно оси часто можно упростить, вычислив предварительно момент инерции его относительно точки . Сам по себе момент инерции тела относительно точки не играет никакой роли в динамике. Он является чисто вспомогательным понятием, служащим для упрощения вычислений. Моментом инерции тела относительно точки О называется сумма произведений масс материальных точек, из которых тело состоит, на квадраты их расстояний R до точки О : q = ΣmR 2 . В случае непрерывного распределения масс эта сумма сводится к интегралу q = ∫R 2 dm . Само собой понятно, что момент θ не следует смешивать с моментом инерции I относительно оси. В случае момента I массы dm умножаются на квадраты расстояний до этой оси, а в случае момента θ - до неподвижной точки.


Рассмотрим сначала одну материальную точку с массой m и с координатами x , у , z относительно прямоугольной системы координат (рис. 4.7). Квадраты расстояний ее до координатных осей Х , Y , Z равны соответственно у 2 + z 2 , z 2 + x 2 , x 2 + у 2 , а моменты инерции относительно тех же осей

I X = m (y 2 + z 2), I У = m (z 2 + x 2),

I Z = m (x 2 + y 2).

Сложим эти три равенства, получим I X + I У + I Z = 2m (x 2 + у 2 + z 2).

Но х 2 + у 2 + z 2 = R 2 , где R - расстояние точки m от начала координат О. Поэтому

I X + I У + I Z = . (4.19)

Это соотношение справедливо не только для одной материальной точки, но и для произвольного тела, так как тело можно рассматривать как совокупность материальных точек. Таким образом, сумма моментов инерции тела относительно трех взаимно перпендикулярных осей, пересекающихся в одной точке О, равна удвоенному моменту инерции того же тела относительно этой точки.

Момент инерции полого шара с бесконечно тонкими стенками .

Сначала найдем момент инерции θ относительно центра шара. Очевидно, он равен θ = mR 2 . Затем применяем формулу (4.19). Полагая в ней ввиду симметрии I X = I Y = I Z = I. В результате находим момент инерции полого шара относительно его диаметра

Момент силы и момент инерции

В динамике поступательного движения материальной точки кроме кинематических характеристик вводились понятия силы и массы. При изучении динамики вращательного движения вводятся физические вели­чины - момент сил и момент инерции , физический смысл которых рас­кроем ниже.

Пусть некоторое тело под действием силы , приложенной в точке А , приходит во вращение вокруг оси ОО" (рисунок 5.1).

Рисунок 5.1 – К выводу понятия момента силы

Сила действует в плоскости, перпендикулярной оси. Перпендикуляр р , опущенный из точки О (лежащей на оси) на направление силы, назы­вают плечом силы . Произведение силы на плечо определяет модуль мо­мента силы относительно точки О :

(5.1)

Момент силы есть вектор, определяемый векторным произведением радиуса-вектора точки приложения силы и вектора силы :

(5.2)

Единица момента силы - ньютон-метр . м). Направление вектора момента силы находиться с помощью пра­вила правого винта .

Мерой инертности тел при поступательном движении является масса. Инертность тел при вращательном движении зависит не только от массы, но и от ее распределения в пространстве относительно оси вращения. Мерой инертности при вращательном движении служит величина, назы­ваемая моментом инерции тела относительно оси вращения.

Момент инерции материальной точки относительно оси враще­ния - произведение массы этой точки на квадрат расстояния от оси :

Момент инерции тела относительно оси вращения - сумма мо­ментов инерции материальных точек, из которых состоит это тело :

(5.4)

В общем случае, если тело сплошное и представляет собой совокуп­ность точек с малыми массами dm , момент инерции определяется интег­рированием:

, (5.5)

где r - расстояние от оси вращения до элемента массой dm .

Если тело однородно и его плотность ρ = m /V , то момент инерции тела

(5.6)

Момент инерции тела зависит от того, относительно какой оси оно вращается и как распределена масса тела по объему.

Наиболее просто определяется момент инерции тел, имеющих пра­вильную геометрическую форму и равномерное распределение массы по объему.

Момент инерции однородного стержня относительно оси, прохо­дящей через центр инерции и перпендикулярной стержню,

Момент инерции однородного цилиндра относительно оси, перпен­дикулярной его основанию и проходящей через центр инерции,

(5.8)

Момент инерции тонкостенного цилиндра или обруча относи­тельно оси, перпендикулярной плоскости его основания и проходящей через его центр,

Момент инерции шара относительно диаметра

(5.10)

Определим момент инерции диска относительно оси, проходящей че­рез центр инерции и перпендикулярной плоско­сти вращения. Пусть масса диска – m , а его радиус – R .

Площадь кольца (рисунок 5.2), заключенного между r и , равна .

Рисунок 5.2 – К выводу момента инерции диска

Площадь диска . При постоянной толщине кольца,

откуда или .

Тогда момент инерции диска,

Для наглядности на рисунке 5.3 изображены однородные твердые тела различной формы и указаны моменты инерции этих тел относительно оси, проходящей через центр масс.

Рисунок 5.3 – Моменты инерции I C некоторых однородных твердых тел.

Теорема Штейнера

Приведенные выше формулы для моментов инерции тел даны при усло­вии, что ось вращения проходит через центр инерции. Чтобы определить моменты инерции тела относительно произвольной оси, следует восполь­зоваться теоремой Штейнера : момент инерции тела относительно произвольной оси вращения равен сумме момента инерции J 0 отно­сительно оси, параллельной данной и проходящей через центр инер­ции тела, и величины md 2:

(5.12)

где m - масса тела, d - расстояние от центра масс до выбранной оси вра­щения. Единица момента инерции - килограмм-метр в квадрате (кг . м 2).

Так, момент инерции однородного стержня длиной l относительно оси, про­ходящей через его конец, по теореме Штейнера равен

Понравилась статья? Поделиться с друзьями: