Уравнение бернулли возможность потери решений. Дифференциальное уравнение бернулли

Документальные учебные фильмы. Серия «Физика».

Даниил Бернулли (Daniel Bernoulli; 29 января (8 февраля) 1700 - 17 марта 1782), швейцарский физик-универсал, механик и математик, один из создателей кинетической теории газов, гидродинамики и математической физики. Академик и иностранный почётный член (1733) Петербургской академии наук, член Академий: Болонской (1724), Берлинской (1747), Парижской (1748), Лондонского королевского общества (1750). Сын Иоганна Бернулли.

Закон (уравнение) Бернулли является (в простейших случаях) следствием закона сохранения энергии для стационарного потока идеальной (то есть без внутреннего трения) несжимаемой жидкости:

Здесь

- плотность жидкости, - скорость потока, - высота, на которой находится рассматриваемый элемент жидкости, - давление в точке пространства, где расположен центр массы рассматриваемого элемента жидкости, - ускорение свободного падения.

Уравнение Бернулли также может быть выведено как следствие уравнения Эйлера, выражающего баланс импульса для движущейся жидкости.

В научной литературе закон Бернулли, как правило, называется уравнением Бернулли (не следует путать с дифференциальным уравнением Бернулли), теоремой Бернулли или интегралом Бернулли .

Константа в правой части часто называется полным давлением и зависит, в общем случае, от линии тока.

Размерность всех слагаемых - единица энергии, приходящаяся на единицу объёма жидкости. Первое и второе слагаемое в интеграле Бернулли имеют смысл кинетической и потенциальной энергии, приходящейся на единицу объёма жидкости. Следует обратить внимание на то, что третье слагаемое по своему происхождению является работой сил давления и не представляет собой запаса какого-либо специального вида энергии («энергии давления»).

Соотношение, близкое к приведенному выше, было получено в 1738 г. Даниилом Бернулли, с именем которого обычно связывают интеграл Бернулли . В современном виде интеграл был получен Иоганном Бернулли около 1740 года.

Для горизонтальной трубы высота постоянна и уравнение Бернулли принимает вид: .

Эта форма уравнения Бернулли может быть получена путём интегрирования уравнения Эйлера для стационарного одномерного потока жидкости, при постоянной плотности : .


Согласно закону Бернулли, полное давление в установившемся потоке жидкости остается постоянным вдоль этого потока.

Полное давление состоит из весового , статического и динамического давлений.

Из закона Бернулли следует, что при уменьшении сечения потока, из-за возрастания скорости, то есть динамического давления, статическое давление падает. Это является основной причиной эффекта Магнуса. Закон Бернулли справедлив и для ламинарных потоков газа. Явление понижения давления при увеличении скорости потока лежит в основе работы различного рода расходомеров (например труба Вентури), водо- и пароструйных насосов. А последовательное применение закона Бернулли привело к появлению технической гидромеханической дисциплины - гидравлики.

Закон Бернулли справедлив в чистом виде только для жидкостей, вязкость которых равна нулю. Для приближённого описания течений реальных жидкостей в технической гидромеханике (гидравлике) используют интеграл Бернулли с добавлением слагаемых, учитывающих потери на местных и распределенных сопротивлениях.

Известны обобщения интеграла Бернулли для некоторых классов течений вязкой жидкости (например, для плоскопараллельных течений), в магнитной гидродинамике, феррогидродинамике.

Дифференциальное уравнение Бернулли — это уравнение вида

где n≠0,n≠1.

Это уравнение может быть преобразовано при помощи подстановки

в линейное уравнение

На практике дифференциальное уравнение Бернулли обычно не приводят к линейному, а сразу решают теми же методами, что и линейное уравнение — либо методом Бернулли, либо методом вариации произвольной постоянной.

Рассмотрим, как решить дифференциальное уравнение Бернулли с помощью замены y=uv (метод Бернулли). Схема решения — как и при .

Примеры. Решить уравнения:

1) y’x+y=-xy².

Это дифференциальное уравнение Бернулли. Приведем его к стандартному виду. Для этого поделим обе части на x: y’+y/x=-y². Здесь p(x)=1/x, q(x)=-1, n=2. Но для решения нам не нужен стандартный вид. Будем работать с той формой записи, которая дана в условии.

1) Замена y=uv, где u=u(x) и v=v(x) — некоторые новые функции от x. Тогда y’=(uv)’=u’v+v’u. Подставляем полученные выражения в условие: (u’v+v’u)x+uv=-xu²v².

2) Раскроем скобки: u’vx+v’ux+uv=-xu²v². Теперь сгруппируем слагаемые с v: v+v’ux=-xu²v² (I) (слагаемое со степенью v, стоящее в правой части уравнения, не трогаем). Теперь требуем, чтобы выражение в скобках равнялось нулю: u’x+u=0. А это — уравнение с разделяющимися переменными u и x. Решив его, мы найдем u. Подставляем u=du/dx и разделяем переменные: x·du/dx=-u. Обе части уравнения умножаем на dx и делим на xu≠0:

(при нахождении u С берем равным нулю).

3) В уравнение (I) подставляем =0 и найденную функцию u=1/x. Имеем уравнение: v’·(1/x)·x=-x·(1/x²)·v². После упрощения: v’=-(1/x)·v². Это уравнение с разделяющимися переменными v и x. Заменяем v’=dv/dx и разделяем переменные: dv/dx=-(1/x)·v². Умножаем обе части уравнения на dx и делим на v²≠0:

(взяли -С, чтобы, умножив обе части на -1, избавиться от минуса). Итак, умножаем на (-1):

(можно было бы взять не С, а ln│C│ и в этом случае было бы v=1/ln│Cx│).

2) 2y’+2y=xy².

Убедимся в том, что это — уравнение Бернулли. Поделив на 2 обе части, получаем y’+y=(x/2) y². Здесь p(x)=1, q(x)=x/2, n=2. Решаем уравнение методом Бернулли.

1) Замена y=uv, y’=u’v+v’u. Подставляем эти выражения в первоначальное условие: 2(u’v+v’u)+2uv=xu²v².

2) Раскрываем скобки: 2u’v+2v’u+2uv=xu²v². Теперь сгруппируем слагаемые, содержащие v: +2v’u=xu²v² (II). Требуем, чтобы выражение в скобках равнялось нулю: 2u’+2u=0, отсюда u’+u=0. Это — уравнение с разделяющимися переменными относительно u и x. Решим его и найдем u. Подставляем u’=du/dx, откуда du/dx=-u. Умножив обе части уравнения на dx и поделив на u≠0, получаем: du/u=-dx. Интегрируем:

3) Подставляем во (II) =0 и

Теперь подставляем v’=dv/dx и разделяем переменные:

Интегрируем:

Левая часть равенства — табличный интеграл, интеграл в правой части находим по формуле интегрирования по частям:

Подставляем найденные v и du по формуле интегрирования по частям имеем:

А так как

Сделаем С=-С:

4) Так как y=uv, подставляем найденные функции u и v:

3) Проинтегрировать уравнение x²(x-1)y’-y²-x(x-2)y=0.

Разделим на x²(x-1)≠0 обе части уравнения и слагаемое с y² перенесем в правую часть:

Это — уравнение Бернулли,

1) Замена y=uv, y’=u’v+v’u. Как обычно, эти выражения подставляем в первоначальное условие: x²(x-1)(u’v+v’u)-u²v²-x(x-2)uv=0.

2) Отсюда x²(x-1)u’v+x²(x-1)v’u-x(x-2)uv=u²v². Группируем слагаемые, содержащие v (v² — не трогаем):

v+x²(x-1)v’u=u²v² (III). Теперь требуем равенства нулю выражения в скобках: x²(x-1)u’-x(x-2)u=0, отсюда x²(x-1)u’=x(x-2)u. В уравнении разделяем переменные u и x, u’=du/dx: x²(x-1)du/dx=x(x-2)u. Обе части уравнения умножаем на dx и делим на x²(x-1)u≠0:

В левой части уравнения — табличный интеграл. Рациональную дробь в правой части надо разложить на простейшие дроби:

При x=1: 1-2=A·0+B·1, откуда B=-1.

При x=0: 0-2=A(0-1)+B·0, откуда A=2.

ln│u│=2ln│x│-ln│x-1│. По свойствам логарифмов: ln│u│=ln│x²/(x-1)│, откуда u=x²/(x-1).

3) В равенство (III) подставляем =0 и u=x²/(x-1). Получаем: 0+x²(x-1)v’u=u²v²,

v’=dv/dx, подставляем:

вместо С возьмем — С, чтобы, умножив обе части на (-1), избавиться от минусов:

Теперь приведем выражения в правой части к общему знаменателю и найдем v:

4) Так как y=uv, подставляя найденные функции u и v, получаем:

Примеры для самопроверки:

1) Убедимся, что это — уравнение Бернулли. Поделив на x обе части, имеем:

1) Замена y=uv, откуда y’=u’v+v’u. Эти y и y’ подставляем в первоначальное условие:

2) Группируем слагаемые с v:

Теперь требуем, чтобы выражение в скобках равнялось нулю и находим из этого условия u:

Интегрируем обе части уравнения:

3) В уравнение (*) подставляем =0 и u=1/x²:

Интегрируем обе части получившегося уравнения.

Рассмотрим ламинарное движение идеальной (то есть без внутреннего трения) несжимаемой жидкости в изогнутой трубке разного диаметра. Мы уже знаем, что из уравнения непрерывности жидкости S⋅v = const. Какие ещё можно сделать выводы?

Рассмотрим трубку разного сечения:

Возьмём срез жидкости в трубке. Из уравнения непрерывности следует, что при уменьшении сечения трубы увеличивается скорость потока жидкости. Если скорость увеличивается, значит по второму закону Ньютона действует сила F = m⋅a. Эта сила возникает за счет разности давления между стенками сечения потока жидкости. Значит сзади давление больше, чем спереди сечения. Это явление впервые описал Даниил Бернулли.

Закон Бернулли

В тех участках течения жидкости, где скорость больше давление меньше и наоборот.

Как любое тело, жидкость при перемещении совершает работу, т.е. выделяет энергию или поглощает. Закон сохранения энергии утверждает, что энергия тела никогда не исчезает и не появляется вновь, она может лишь превращаться из одного вида в другой. Этот закон универсален. В различных разделах физики он имеет свою формулировку.

Рассмотрим, какую работу совершает жидкость:

  • Работа давления жидкости (E P) . Давления жидкости выражается в том, что жидкость сзади давит на жидкость спереди.
  • Работа по перемещению жидкости на высоту h (E h) . При опускании жидкости эта работа отрицательная, при поднятии - положительная.
  • Работа по приданию скорости жидкости (E v) . При сужении трубки работа положительная, при расширении - отрицательная. Ещё это называют - кинетическая энергия или динамическое давление.

Так как мы рассматриваем идеальную жидкость, то трение отсутствует, а значит нет работы силы трения. Но в реальной жидкости она присутствует.

По закону сохранения энергии:

E p + E h + E v = const

Давайте теперь определим, чем равняется каждая из этих работ.

Работа давления жидкости (E P)

Формула давления имеет вид: P = F/S, F = P⋅S. Работа силы создающая давление:

E P = P⋅S⋅ΔL = P⋅V

Работа по перемещению жидкости на высоту h (E h)

Работа по перемещению жидкости на высоту h - это изменение потенциальной энергии которая равна:

E h = m⋅g⋅h = V⋅ρ⋅g⋅h

Работа по приданию скорости жидкости (E v)

Работа по приданию скорости жидкости - это кинетическая энергия, которая зависит от массы тела и его скорости и равна:

E k = m⋅v 2 /2 = V⋅ρ⋅v 2 /2

Получим формулу сохранения энергии жидкости:

P⋅V + V⋅ρ⋅g⋅h + V⋅ρ⋅v 2 /2 = const

Сократим каждое слагаемое на V. Получим уравнение:

Формула Бернулли

P + ρ⋅g⋅h + ρ⋅v 2 /2 = const

Разделим каждый член последнего уравнения ρ⋅g, получим

h + P  +  v 2  = const
ρ⋅g 2g

где h - геометрический напор, м;
P / ρ∙g - пьезометрический напор, м;
v 2 / 2g - скоростной напор, м.

Полученное уравнение называется уравнением Бернулли для элементарной струйки идеальной жидкости. Оно было получено Даниилом Бернулли в 1738 году.

Сумма трех членов уравнения называется полным напором.

Или можно сказать по-другому - для идеальной движущейся жидкости сумма трех напоров: геометрического, пьезометрического и скоростного есть величина постоянная вдоль струйки.

Уравнение Бернулли является основным уравнением гидродинамики , устанавливающим связь между средней скоростью потока и гидродинамическим давлением в установившемся движении.

Рассмотрим элементарную струйку в установившемся движении идеальной жидкости. Выделим двумя сечениями, перпендикулярными к направлению вектора скоростиu , элемент длиной dl и площадью dF . Выделенный объем будет находиться под действием силы тяжести

и сил гидродинамического давления
.

Так как
, то
.

Учитывая, что в общем случае скорость выделенного элемента
, его ускорение

.

Применив к выделенному элементу весом
уравнение динамики
в проекции на траекторию его движения, получим

Учитывая то, что
и что при установившемся движении
, после интегрирования и деления на
получим полный напор потока в рассматриваемом сечении:

,

где - геометрический напор (высота), выражающий удельную потенциальную энергию положения частички жидкости над некоторой плоскостью отсчета, м,

- пьезометрический напор, выражающий удельную энергию давления, м,

- скоростной напор, выражающий удельную кинетическую энергию, м,

- статический напор, м.

Это и есть уравнение Бернулли. Трехчлен этого уравнения выражает напор в соответствующем сечении и представляет собой удельную (отнесенную к единице веса) механическую энергию, переносимую элементарной струйкой через это сечение.

Впрактике технических измерений уравнение Бернулли используют для определения скорости жидкости
.

Уравнение Бернулли можно получить еще и следующим образом. Представим себе, что рассматриваемый нами элемент жидкости является неподвижным. Тогда на основании основного уравнения гидростатики
потенциальная энергия жидкости в сечениях 1 и 2 будет

.

Движение жидкости характеризуется появлением кинетической энергии, которая для единицы веса будет равна для рассматриваемых сечений
и
. Полная энергия потока элементарной струйки будет равна сумме потенциальной и кинетической энергии, поэтому

.

Таким образом, основное уравнение гидростатики является следствием уравнения Бернулли.

Лекция №7

Уравнение бернулли для реальной жидкости

Уравнение Бернулли в установившемся движении идеальной жидкости имеет вид:

.

где - геометрический напор (высота), м,- пьезометрический напор, м,

- скоростной напор, м,
- статический напор, м.

В случае реальной жидкости полный напор для разных струек в одном и том же сечении потока не будет одинаковым, так как неодинаковым будет скоростной напор в разных точках одного и того же сечения потока. Кроме того, в виду рассеяния энергии из-за трения напор от сечения к сечению будет убывать.

Однако для сечений потока, взятых там, где движение на его участках плавно меняющееся, для всех проходящих через сечение элементарных струек будет постоянным статический напор

.

Если уравнение Бернулли для элементарной струйки распространить на весь поток и учесть потери напора на сопротивление движению, то получим

где α – коэффициент кинетической энергии, равный для турбулентного потока 1,13, а для ламинарного – 2; v – средняя скорость потока; h – уменьшение удельной механической энергии потока на участке между сечениями 1 и 2, проходящее в результате сил внутреннего трения.

Расчет дополнительного члена h в уравнении Бернулли является основной задачей инженерной гидравлики.

Графическое представление уравнения Бернулли для нескольких сечений потока реальной жидкости имеет вид:

Линия А, которая проходит по уровням в пьезометрах, измеряющих в точках избыточное давление, называетсяпьезометрической линией . Она показывает изменение отсчитанного от плоскости сравнения статического напора Н с по длине потока. Пьезометрическая линия отделяет область измерения потенциальной и кинетической энергии.

Полный напор Н уменьшается по длине потока (линия В – линия полного напора реальной жидкости).

Градиент напора по длине потока называется гидравлическим уклоном и выражается формулой

,

т.е. гидравлический уклон численно равен синусу угла между горизонталью и линией полного напора реальной жидкости.

Расходомер Вентури

Расходомер Вентури представляет собой устройство, устанавливаемое в трубопроводах и осуществляющее сужение потока – дросселирование. Расходомер состоит из двух участков – плавно сужающегося (сопла) и постепенно расширяющегося (диффузора). Скорость потока в суженном месте возрастает, а давление падает. В наибольшем и наименьшем сечениях трубы установлены пьезометры, показания которых позволяют определить перепад пьезометрического напора между двумя сечениями трубы и записать

.

В этом уравнении неизвестными являются v 1 и v 2 . Из уравнения неразрывности следует
, что позволяет определить скоростьv 2 и расход жидкости через трубу

,

где С – константа расходомера, учитывающая также и потери напора, так как определяется опытом.

Аналогично ведется расчет расходомерной шайбы, обычно выполняемой в виде кольца. Расход определяется по замеренной разности уровней в пьезометрах.

Уравнение Бернулли и уравнение неразрывности потока являются основными при расчете гидравлических систем.

Очень многое из окружающего нас мира подчиняется законам физики. Этому не стоит удивляться, ведь термин «физика» происходит от греческого слова, в переводе означающего «природа». И одним из таких законов, постоянно работающих вокруг нас, является закон Бернулли.

Сам по себе закон выступает как следствие принципа сохранения энергии. Такая его трактовка позволяет придать новое понимание многим ранее хорошо известным явлениям. Для понимания сути закона просто достаточно вспомнить протекающий ручеек. Вот он течет, бежит между камней, веток и корней. В каких-то местах делается шире, где-то уже. Можно заметить, что там, где ручеек шире, вода течет медленнее, где уже, вода течет быстрее. Вот это и есть принцип Бернулли, который устанавливает зависимость между давлением в потоке жидкости и скоростью движения такого потока.

Правда, учебники физики его формулируют несколько по-другому, и имеет он отношение к гидродинамике, а не к протекающему ручью. В достаточно популярном Бернулли можно изложить в таком варианте - давление жидкости, протекающей в трубе, выше там, где скорость ее движения меньше, и наоборот: там, где скорость больше, давление меньше.

Для подтверждения достаточно провести простейший опыт. Надо взять лист бумаги и подуть вдоль него. Бумага поднимется вверх, в ту сторону, вдоль которой проходит поток воздуха.

Все очень просто. Как говорит закон Бернулли, там, где скорость выше, давление меньше. Значит, вдоль поверхности листа, где проходит поток меньше, а снизу листа, где потока воздуха нет, давление больше. Вот лист и поднимается в ту сторону, где давление меньше, т.е. туда, где проходит поток воздуха.

Описанный эффект находит широкое применение в быту и в технике. Как пример можно рассмотреть краскопульт или аэрограф. В них используются две трубки, одна большего сечения, другая меньшего. Та, которая большего диаметра, присоединена к емкости с краской, по той, что меньшего сечения, проходит с большой скоростью воздух. Благодаря возникающей разности давлений краска попадает в поток воздуха и переносится этим потоком на поверхность, которая должна быть окрашена.

По этому же принципу может работать и насос. Фактически то, что описано выше, и есть насос.

Не менее интересно выглядит закон Бернулли в применении для осушения болот. Как всегда, все очень просто. Заболоченная местность соединяется канавами с рекой. Течение в реке есть, в болоте нет. Опять возникает разность давлений, и река начинает высасывать воду из заболоченной местности. Происходит в чистом виде демонстрация работы закона физики.

Воздействие этого эффекта может носить и разрушительный характер. Например, если два корабля пройдут близко друг от друга, то скорость движения воды между ними будет выше, чем с другой стороны. В результате возникнет дополнительная сила, которая притянет корабли друг к другу, и катастрофа будет неизбежна.

Можно все сказанное изложить в виде формул, но уравнения Бернулли писать совсем не обязательно для понимания физической сути этого явления.

Для лучшего понимания приведем еще один пример использования описываемого закона. Все представляют себе ракету. В специальной камере происходит сгорание топлива, и образуется реактивная струя. Для ее ускорения используется специально суженный участок - сопло. Здесь происходит ускорение струи газов и вследствие этого - рост

Существует еще множество различных вариантов использования закона Бернулли в технике, но все их рассмотреть в рамках настоящей статьи просто невозможно.

Итак, сформулирован закон Бернулли, дано объяснение физической сущности происходящих процессов, на примерах из природы и техники показаны возможные варианты применения этого закона.

Понравилась статья? Поделиться с друзьями: