Связь тригонометрической функции и медицины. Тригонометрия в ранние века. связанные с окружностью, а как

align=center>

Тригонометрия - микрораздел математики, в котором изучаются зависимости между величинами углов и длинами сторон треугольников, а также алгебраические тождества тригонометрических функций.
Существует множество областей, в которых применяются тригонометрия и тригонометрические функции. Тригонометрия или тригонометрические функции используются в астрономии, в морской и воздушной навигации, в акустике, в оптике, в электронике, в архитектуре и в других областях.

История создания тригонометрии

История тригонометрии, как науки о соотношениях между углами и сторонами треугольника и других геометрических фигур, охватывает более двух тысячелетий. Большинство таких соотношений нельзя выразить с помощью обычных алгебраических операций, и поэтому понадобилось ввести особые тригонометрические функции, первоначально оформлявшиеся в виде числовых таблиц.
Историки полагают, что тригонометрию создали древние астрономы, немного позднее её стали использовать в архитектуре. Со временем область применения тригонометрии постоянно расширялась, в наши дни она включает практически все естественные науки, технику и ряд других областей деятельности.

Ранние века

От вавилонской математики ведёт начало привычное нам измерение углов градусами, минутами и секундами (введение этих единиц в древнегреческую математику обычно приписывают , II век до н. э.).

Главным достижением этого периода стало соотношение катетов и гипотенузы в прямоугольном треугольнике, позже получившее имя теоремы Пифагора .

Древняя Греция

Общее и логически связное изложение тригонометрических соотношений появилось в древнегреческой геометрии. Греческие математики ещё не выделяли тригонометрию как отдельную науку, для них она была частью астрономии.
Основным достижением античной тригонометрической теории стало решение в общем виде задачи «решения треугольников», то есть нахождения неизвестных элементов треугольника, исходя из трёх заданных его элементов (из которых хотя бы один является стороной).
Прикладные тригонометрические задачи отличаются большим разнообразием - например, могут быть заданы измеримые на практике результаты действий над перечисленными величинами (к примеру, сумма углов или отношение длин сторон).
Параллельно с развитием тригонометрии плоскости греки, под влиянием астрономии, далеко продвинули сферическую тригонометрию. В «Началах» Евклида на эту тему имеется только теорема об отношении объёмов шаров разного диаметра, но потребности астрономии и картографии вызвали быстрое развитие сферической тригонометрии и смежных с ней областей - системы небесных координат, теории картографических проекций, технологии астрономических приборов.

Средневековье

В IV веке, после гибели античной науки, центр развития математики переместился в Индию. Они изменили некоторые концепции тригонометрии, приблизив их к современным: к примеру, они первыми ввели в использование косинус.

Первым специализированным трактатом по тригонометрии было сочинение среднеазиатского учёного (X-XI век) «Книга ключей науки астрономии» (995-996 годы). Целый курс тригонометрии содержал главный труд Аль-Бируни - «Канон Мас‘уда» (книга III). В дополнение к таблицам синусов (с шагом 15") Аль-Бируни дал таблицы тангенсов (с шагом 1°).

После того как арабские трактаты были в XII-XIII веках переведены на латынь, многие идеи индийских и персидских математиков стали достоянием европейской науки. По всей видимости, первое знакомство европейцев с тригонометрией состоялось благодаря зиджу , два перевода которого были выполнены в XII веке.

Первым европейским сочинением, целиком посвященным тригонометрии, часто называют «Четыре трактата о прямых и обращенных хордах» английского астронома Ричарда Уоллингфордского (около 1320 г.). Тригонометрические таблицы, чаще переводные с арабского, но иногда и оригинальные, содержатся в сочинениях ряда других авторов XIV-XV веков. Тогда же тригонометрия заняла место среди университетских курсов.

Новое время

Развитие тригонометрии в Новое время стало чрезвычайно важным не только для астрономии и астрологии, но и для других приложений, в первую очередь артиллерии, оптики и навигации при дальних морских путешествиях. Поэтому после XVI века этой темой занимались многие выдающиеся учёные, в том числе Николай Коперник , Иоганн Кеплер , Франсуа Виет . Коперник посвятил тригонометрии две главы в своём трактате «О вращении небесных сфер» (1543). Вскоре (1551) появились 15-значные тригонометрические таблицы Ретика , ученика Коперника. Кеплер опубликовал труд «Оптическая часть астрономии» (1604).

Виет в первой части своего «Математического канона» (1579) поместил разнообразные таблицы, в том числе тригонометрические, а во второй части дал обстоятельное и систематическое, хотя и без доказательств, изложение плоской и сферической тригонометрии. В 1593 году Виет подготовил расширенное издание этого капитального труда.
Благодаря трудам Альбрехта Дюрера , на свет появилась синусоида.

XVIII век

Современный вид тригонометрии придал . В трактате «Введение в анализ бесконечных» (1748) Эйлер дал определение тригонометрических функций, эквивалентное современному, и соответственно определил обратные функции.

Эйлер рассматривал как допустимые отрицательные углы и углы, большие 360°, что позволило определить тригонометрические функции на всей вещественной числовой прямой, а затем продолжить их на комплексную плоскость. Когда встал вопрос о распространении тригонометрических функций на тупые углы, знаки этих функций до Эйлера нередко выбирались ошибочно; многие математики считали, например, косинус и тангенс тупого угла положительными. Эйлер определил эти знаки для углов в разных координатных квадрантах, исходя из формул приведения.
Общей теорией тригонометрических рядов Эйлер не занимался и сходимость полученных рядов не исследовал, но получил несколько важных результатов. В частности, он вывел разложения целых степеней синуса и косинуса.

Применение тригонометрии

По своему правы те, кто говорит, что тригонометрия в реальной жизни не нужна. Ну, каковы ее обычные прикладные задачи? Измерять расстояние между недоступными объектами.
Большое значение имеет техника триангуляции, позволяющая измерять расстояния до недалёких звёзд в астрономии, между ориентирами в географии, контролировать системы навигации спутников. Также следует отметить применение тригонометрии в таких областях, как техника навигации, теория музыки, акустика, оптика, анализ финансовых рынков, электроника, теория вероятностей, статистика, биология, медицина (включая ультразвуковое исследование (УЗИ) и компьютерную томографию), фармацевтика, химия, теория чисел (и, как следствие, криптография), сейсмология, метеорология, океанология, картография, многие разделы физики, топография и геодезия, архитектура, фонетика, экономика, электронная техника, машиностроение, компьютерная графика, кристаллография и т.д.
Вывод: тригонометрия - огромная помощница в нашей повседневной жизни.

МБОУ Целинная СОШ

Доклад Тригонометрия в реальной жизни

Подготовила и провела

учитель математики

квалификационной категории

Ильина В. П.

п. Целинный март 2014г.

Оглавление.

1.Введение .

2.История создания тригонометрии:

    Ранние века.

    Древняя Греция.

    Средневековье.

    Новое время.

    Из истории развития сферической геометрии.

3.Тригонометрия и реальная жизнь:

    Применение тригонометрии в навигации.

    Тригонометрия в алгебре.

    Тригонометрия в физике.

    Тригонометрия в медицине и биологии.

    Тригонометрия в музыке.

    Тригонометрия в информатике

    Тригонометрия в строительстве и геодезии.

4. Заключение .

5. Список литературы.

Введение

Издавна в математике установилась такая практика, что при систематическом изучении математики нам – ученикам приходится встречаться с тригонометрией трижды. Соответственно её содержание представляется состоящим из трёх частей. Эти части при обучении отделены друг от друга по времени и не похожи друг на друга как по смыслу, вкладываемому в объяснения основных понятий, так и по развиваемому аппарату и по служебным функциям (приложениям).

И в самом деле, впервые тригонометрический материал мы встретили в 8 классе при изучении темы «Соотношения между сторонами и углами прямоугольного треугольника». Так мы узнали, что такое синус, косинус и тангенс, научились решать плоские треугольники.

Однако прошло некоторое время и в 9-м классе мы снова вернулись к тригонометрии. Но эта тригонометрия не похожа на ту, что изучали ранее. Её соотношения определяются теперь с помощью окружности (единичной полуокружности), а не прямоугольного треугольника. Хотя они по-прежнему определяются как функции углов, но эти углы уже произвольно велики.

Перейдя же в 10 класс, мы снова столкнулись с тригонометрией и увидели, что она стала ещё сложнее, ввелось понятие радианная мера угла, иначе выглядят и тригонометрические тождества, и постановка задач, и трактовка их решений. Вводятся графики тригонометрических функций. Наконец, появляются тригонометрические уравнения. И весь этот материал предстал перед нами уже как часть алгебры, а не как геометрия. И нам стало очень интересно изучить историю тригонометрии, её применение в повседневной жизни, потому что использование учителем математики исторических сведений не является обязательным при изложении материала урока. Однако, как указывает К. А. Малыгин «...экскурсы в историческое прошлое оживляют урок, дают разрядку умственному напряжению, поднимают интерес к изучаемому материалу и способствуют прочному его усвоению» . Тем более что материал по истории математики весьма обширен и интересен, так как развитие математики тесным образом связано с решением насущных задач, возникавших во все периоды существования цивилизации.

Узнав об исторических причинах возникновения тригонометрии, и изучив, как плоды деятельности великих ученых оказали влияние на развитие этой области математики и на решение конкретных задач, у нас, у школьников, повышается интерес к изучаемому предмету, и мы увидим его практическое значение.

Цель проекта - развитие интереса к изучению темы «Тригонометрия» в курсе алгебры и начала анализа через призму прикладного значения изучаемого материала; расширение графических представлений, содержащих тригонометрические функции; применение тригонометрии в таких науках, как физика, биология и т.п.

Связь тригонометрии с окружающим миром, значение тригонометрии в решении многих практических задач, графические возможности тригонометрических функций позволяют «материализовать» знания школьников. Это позволяет лучше понять жизненную необходимость знаний, приобретаемых при изучении тригонометрии, повышает интерес к изучению данной темы.

Задачи исследования:

1.Рассмотреть историю возникновения и развития тригонометрии.

2.Показать на конкретных примерах практические приложения тригонометрии в различных науках.

3.Раскрыть на конкретных примерах возможности использования тригонометрических функций, позволяющие «мало интересные» функции превращать в функции, графики которых имеют весьма оригинальный вид.

« Одно осталось ясно, что мир устроен грозно и прекрасно».

Н. Рубцов

Тригонометрия - это раздел математики, в котором изучаются зависимости между величинами углов и длинами сторон треугольников, а также алгебраические тождества тригонометрических функций. Сложно представить, но с этой наукой мы сталкиваемся не только на уроках математики, но и в нашей повседневной жизни. Мы могли не подозревать об этом, но тригонометрия встречается в таких науках, как физика, биология, не последнюю роль она играет и в медицине, и, что самое интересное, без нее не обошлось даже в музыке и архитектуре. Значительную роль в развитии навыков применения на практике теоретических знаний, полученных при изучении математики, играют задачи с практическим содержанием. Каждого изучающего математику, интересует, как и где применяются полученные знания. Ответ на этот вопрос и дает данная работа.

История создания тригонометрии

Ранние века

От вавилонской математики ведёт начало привычное нам измерение углов градусами, минутами и секундами (введение этих единиц в древнегреческую математику обычно приписывают , II век до н. э.).

Главным достижением этого периода стало соотношение катетов и гипотенузы в прямоугольном треугольнике, позже получившее имя .

Древняя Греция

Общее и логически связное изложение тригонометрических соотношений появилось в древнегреческой геометрии. Греческие математики ещё не выделяли тригонометрию как отдельную науку, для них она была частью астрономии.
Основным достижением античной тригонометрической теории стало решение в общем виде задачи «решения треугольников», то есть нахождения неизвестных элементов треугольника, исходя из трёх заданных его элементов (из которых хотя бы один является стороной).


Средневековье

В IV веке, после гибели античной науки, центр развития математики переместился в Индию. Они изменили некоторые концепции тригонометрии, приблизив их к современным: к примеру, они первыми ввели в использование косинус.
Первым специализированным трактатом по тригонометрии было сочинение среднеазиатского учёного (X-XI век) «Книга ключей науки астрономии» (995-996 годы). Целый курс тригонометрии содержал главный труд Аль-Бируни - «Канон Мас‘уда» (книга III). В дополнение к таблицам синусов (с шагом 15") Аль-Бируни дал таблицы тангенсов (с шагом 1°).

После того как арабские трактаты были в XII-XIII веках переведены на латынь, многие идеи индийских и персидских математиков стали достоянием европейской науки. По всей видимости, первое знакомство европейцев с тригонометрией состоялось благодаря зиджу , два перевода которого были выполнены в XII веке.

Первым европейским сочинением, целиком посвященным тригонометрии, часто называют «Четыре трактата о прямых и обращенных хордах» английского астронома (около 1320 г.). Тригонометрические таблицы, чаще переводные с арабского, но иногда и оригинальные, содержатся в сочинениях ряда других авторов XIV-XV веков. Тогда же тригонометрия заняла место среди университетских курсов.

Новое время

Слово «тригонометрия» впервые встречается (1505 г) в заглавии книги немецкого теолога и математика Питискуса.Происхождение этого слова греческое: треугольник, мера. Иными словами, тригонометрия-наука об измерении треугольников. Хотя название возникло сравнительно недавно, многие относимые сейчас к тригонометрии понятия и факты были известны уже две тысячи лет назад.

Длительную историю имеет понятие синуса. Фактически различные отношения отрезков треугольника и окружности(а по существу, и тригонометрические функции) встречаются уже в ӀӀӀ в. до н. э в работах великих математиков Древней Греции-Евклида, Архимеда, Аполлония Пергского. В римский период эти отношения уже достаточно систематично исследовались Менелаем(Ӏ в. до н. э), хотя и не приобрели специального названия. Современный минус угла, например изучался как произведение полухорд, на которую опирается центральный угол величиной, или как хорда удвоенной дуги.

В последующий период математика долгое время наиболее активно развивалась индийскими и арабскими учеными. В Ӏ V - V вв. появился, в частности, уже специальный термин в трудах по астрономии великого индийского ученого Ариабхаты(476-ок. 550), именем которого назван первый индийский спутник Земли.

Позднее привилось более краткое название джива. Арабскими математиками в Ι X в. слово джива(или джиба) было заменено на арабское слово джайб(выпуклость). При переводе арабских математических текстов в XΙΙ в. это слово было заменено латинским синус(sinus -изгиб, кривизна)

Слово косинус намного моложе. Косинус-это сокращение латинского выражения complement sinus , т.е «дополнительный синус» (или иначе «синус дополнительной дуги»; вспомните cos a = sin (90°- a )).

Имея дело с тригонометрическими функциями, мы существенно выходим за рамки задачи «измерения треугольников». По этому известный математик Ф. Клейн (1849-1925) предлагал учение о «тригонометрических» функциях называть иначе- гониометрией(угол). Однако это название не привилось.

Тангенсы возникли в связи с решением задачи об определении длины тени. Тангенс(а также котангенс, секанс и косеканс) введен в X в. арабским математиком Абу-л-Вафой, который составил и первые таблицы для нахождения тангенсов и котангенсов. Однако эти открытия долгое время оставались неизвестными европейским ученым, и тангенсы были заново открыты в XΙV в. сначала английским ученым Т. Бравердином, а позднее немецким математиком, астрономом Региомонтаном (1467 г). Название «тангенс», происходящее от латинского tanger (касаться), появилось в 1583 г. Tangens переводится как «касающийся» (вспомните: линия тангенсов - это касательная к единичной окружности)

Современные обозначения arcsin и arctg появляются в 1772 г в работах венского математика Шерфера и известного французского ученого Ж.Л.Лагранжа, хотя несколько ранее их уже рассматривал Я.Бернулли, который употреблял иную символику. Но общепринятыми эти символы стали лишь в конце XVΙΙΙ столетия. Приставка «арк» происходит от латинского arcus x , например -,это угол (а можно сказать, и дуга),синус которого равен x .

Длительное время тригонометрия развивалась как часть геометрии, т.е. факты, которые мы сейчас формулируем в терминах тригонометрических функций, формулировались и доказывались с помощью геометрических понятий и утверждений. Пожалуй,наибольшие стимулы к развитию тригонометрии возникали в связи с решением задач астрономии, что представляло большой практический интерес(например, для решения задач определения местонахождения судна, предсказаний затмений и т,д)

Астрономов интересовали соотношения между сторонами и углами сферических треугольников, составленных из больших кругов, лежащих на сфере. И надо заметить, что математики древности удачно справлялись с задачами, существенно более трудными, нежели задачи на решении плоских треугольников.

Во всяком случае в геометрической форме многие известные нам формулы тригонометрии открывались и переоткрывались древнегреческими, индийскими, арабскими математиками(правда, формулы разности тригонометрических функций стали известны только в XVΙ Ӏ в.- их вывел английский математик Непер для упрощения вычислений с тригонометрическими функциями. А первый рисунок синусоиды появился в 1634 г.)

Принципиальное значение имело составление К.Птолемеем первой таблицы синусов (долгое время она называлась таблицей хорд): появилось практическое средство решения ряда прикладных задач, и в первую очередь задач астрономии.

Имея дело с готовыми таблицами, или пользуясь калькулятором, мы часто не задумываемся о том, что было время, когда таблицы еще не были изобретены. Для того чтобы составить их, требовалось выполнить не только большой объем вычислений, но и придумать способ составления таблиц. Таблицы Птолемея точны до пяти десятичных знаков включительно.

Современный вид тригонометрии придал крупнейший математик XV ΙӀΙ столетия Л.Эйлер(1707-1783), швейцарец по происхождению, долгие годы работавший в России и являвшийся членом Петербургской Академии наук. Именно Эйлер первый ввел известные определения тригонометрических функций, стал рассматривать функции произвольного угла, получил формулы приведения. Все это малая доля того, что за долгую жизнь успел сделать Эйлер в математике: он оставил свыше 800 работ,доказал многие ставшие классическими теоремы, относящиеся к самым разным областям математики. Но если вы пытаетесь оперировать с тригонометрическими функциями в геометрической форме, т.е так, как это делали многие поколения математиков до Эйлера, то сумеете оценить заслуги Эйлера в систематизации тригонометрии. После Эйлера тригонометрия приобрела новую форму исчисления: различные факты стали доказывать путем формального применения формул тригонометрии, доказательства стали намного компактнее, проще.

Из истории развития сферической геометрии .

Широко известно, что евклидова геометрия является одной из наиболее древних наук.: уже в III веке до н.э. появился классический труд Евклида – «Начала». Менее известно, что сферическая геометрия лишь немного моложе. Её первая систематическая изложение относится к I - II векам. В книге «Сферика», написанной греческим математиком Менелаем (I в.), изучались свойства сферических треугольников; доказывалась, в частности, что сумма углов сферического треугольника больше 180 градусов. Большой шаг вперед сделал другой греческий математик Клавдий Птолемей (II в.). По существу он первый составил таблицы тригонометрических функций, ввел стереографическую проекцию.

Так же как и геометрия Евклида, сферическая геометрия возникла при решении задач практического характера, и в первую очередь задач астрономии. Эти задачи были необходимы, например, путешественникам и мореплавателям, которые ориентировались по звездам. А поскольку при астрономических наблюдениях удобно считать, что и Солнце и Луна, и звезды движутся по изображаемой «небесной сфере», то естественно, что для изучения их движения потребовались знания о геометрии сферы. Не случайно поэтому, что самая известная работа Птолемея называлась « Великое математическое построение астрономии в 13 книгах».

Важнейший период истории сферической тригонометрии связан с деятельностью ученых Ближнего Востока. Индийские ученые успешно решали задачи сферической тригонометрии. Однако метод, описанный Птолемеем и основанный на теореме Менелая полного четырехугольника, у них не применялся. И в сферической тригонометрии они пользовались проективными методами, которые соответствовали методам из «Аналеммы» Птолемея. В результате ими был получен набор определенных вычислительных правил, позволявших решить практически любую задачу сферической астрономии. С их помощью такая задача сводилась в конечном счете к сравнению между собой подобных плоских прямоугольных треугольников. При решений нередко применялись теория квадратных уравнений и метод последовательных приближений. Примером астрономической задачи, которую решали индийские ученые с помощью разработанных им правил, служит задачам, рассматриваемая в сочинении «Панга сиддхантика» Варахамихиры (V - VI ). Она состоит нахождении высоты Солнца, если известно широта места, склонения Солнца и его часовой угол. В результате решения этой задачи после ряда построений устанавливается соотношение, которое равносильно современной теореме косинусов для сферического треугольника. Однако и это соотношение, и другое,эквивалентное теореме синусов, не были обобщены как правила, применимые к любому сферическому треугольнику.

Среди первых восточных ученных, которые обратились к обсуждению теореме Менелая, нужно назвать братьев Бану Мусса –Мухаммеда, Хасана и Ахмада, сыновей Муссы ибн Шакира, работавшего в Багдаде и занимавшегося математикой, астрономией и механикой. Но наиболее ранним из сохранившихся сочинений о теоремы Менелая является «Трактат о фигуре секущих» их ученика Сабита ибн Корры (836-901)

Трактат Сабита ибн Корры дошел до нас в арабском оригинале,. И в латинском переводе XII в. Этот перевод Герандо Кремонским (1114-1187), получил широкое распространение в Средневековой Европе.

История тригонометрии, как науки о соотношениях между углами и сторонами треугольника и других геометрических фигур, охватывает более двух тысячелетий. Большинство таких соотношений нельзя выразить с помощью обычных алгебраических операций, и поэтому понадобилось ввести особые тригонометрические функции, первоначально оформлявшиеся в виде числовых таблиц.
Историки полагают, что тригонометрию создали древние астрономы, немного позднее её стали использовать в архитектуре. Со временем область применения тригонометрии постоянно расширялась, в наши дни она включает практически все естественные науки, технику и ряд других областей деятельности.

Прикладные тригонометрические задачи отличаются большим разнообразием - например, могут быть заданы измеримые на практике результаты действий над перечисленными величинами (к примеру, сумма углов или отношение длин сторон).

Параллельно с развитием тригонометрии плоскости греки, под влиянием астрономии, далеко продвинули сферическую тригонометрию. В «Началах» Евклида на эту тему имеется только теорема об отношении объёмов шаров разного диаметра, но потребности астрономии и картографии вызвали быстрое развитие сферической тригонометрии и смежных с ней областей - системы небесных координат, теории картографических проекций, технологии астрономических приборов.

курсов.

Тригонометрия и реальная жизнь

Тригонометрические функции нашли применение в математическом анализе, физике, информатике, геодезии, медицине, музыке, геофизике, навигации.

Применение тригонометрии в навигации

Навигация (это слово происходит от латинского navigatio – плыву на судне) – одна из наиболее древних наук. Простейшие задачи навигации, такие, например, как определение кратчайшего маршрута, выбор направления движения, встали перед самыми первыми мореплавателями. В настоящее время эти же и другие задачи приходится решать не только морякам, но и лётчикам, и космонавтам. Некоторые понятия и задачи навигации рассмотрим поподробнее.

Задача. Известны географические координаты – широта и долгота пунктов А и В земной поверхности: , и, . Требуется найти кратчайшее расстояние между пунктами А и В вдоль земной поверхности (радиус Земли считается известным: R = 6371 км)

Решение. Напомним сначала, что широтой пункта М земной поверхности называется величина угла, образованного радиусом ОМ, где О – центр Земли, с плоскостью экватора: ≤ , причем севру от экватора широта считается положительной, а к югу – отрицательной (рисунок 1)

Долгота пункта М есть величина двугранного угла между плоскостями СОМ и СОН, где С – Северный полюс Земли, а Н – точка, отвечающая гринвичской обсерватории: ≤ (к востоку от гринвичского меридиана долгота считается положительной, к западу – отрицательной).

Как уже известно, кратчайшее расстояние между пунктами А и В земной поверхности- это длина меньшей из дуг большой окружности, соединяющая А и В (такую дугу называют ортодромией – в переводе с греческого означает «прямой бег»). Поэтому наша задача сводится к определению длины стороны АВ сферического треугольника АВС (С – северный полюс).

Применяя стандартное обозначение для элементов треугольника АВС и соответствующего трехгранного угла ОАВС, из условия задачи находим: α = = - , β = (рис.2).

Угол С также не трудно выразить через координаты точек А и В. По определению ≤ , поэтому либо угол С = , если ≤ , либо - , если. Зная = с помощью теоремы косинусов: = + (-). Зная и, следовательно угол, находим искомое расстояние: =.

Тригонометрия в навигации 2.

Для прокладки курса корабля на карте, выполненной в проекции Герхарда Меркатора (1569г.), необходимо было определять широту. При плавании по Средиземному морю в лоциях до XVII в. широта не указывалась. Впервые применил тригонометрические расчеты в навигации Эдмонд Гюнтер(1623).

Тригонометрия помогает рассчитывать влияние ветра на полет самолета. Треугольник скоростей – это треугольник, образованный вектором воздушной скорости (V ), вектором ветра(W ), вектором путевой скорости (V п ). ПУ – путевой угол, УВ – угол ветра, КУВ – курсовой угол ветра.

Зависимость между элементами навигационного треугольника скоростей имеет вид:

V п = V cos УС + W cos УВ; sin УС = * sin УВ, tg УВ =

Навигационный треугольник скоростей решается с помощью счетных устройств, на навигационной линейке и приближенно в уме.

Тригонометрия в алгебре.

Вот пример решения сложного уравнения с помощью тригонометрической подстановки.

Дано уравнение

Пусть , получим

;

откуда: или

с учётом ограничений получим:

Тригонометрия в физике

Везде, где приходится иметь дело с периодическими процессами и колебаниями – будь то акустика, оптика или качание маятника, мы имеем дело с тригонометрическими функциями. Формулы колебаний:

где A – амплитуда колебания, - угловая частота колебания, -начальная фаза колебания

Фаза колебания.

При погружении предметов в воду они не меняют ни формы, ни размеров. Весь секрет - оптический эффект который заставляет наше зрение воспринимать объект по-иному. Простейшие тригонометрические формулы и значения синуса угла падения и преломления луча дают возможность высчитать постоянный коэффициент преломления при переходе светового луча из среды в среду. Например, радуга возникает из-за того, что солнечный свет испытывает преломление в капельках воды, взвешенных в воздухе по закону преломления:

sin α / sin β = n 1 / n 2

где:

n 1 - показатель преломления первой среды
n 2 - показатель преломления второй среды

α -угол падения, β -угол преломления света.

Проникновение в верхние слои атмосферы планет заряженных частиц солнечного ветра определяется взаимодействием магнитного поля планеты с солнечным ветром.

Сила, действующая на движущуюся в магнитном поле заряженную частицу, называется силой Лоренца. Она пропорциональна заряду частицы и векторному произведению поля и скорости движения частицы.

В качестве практического примера рассмотрим физическую задачу, которая решается с применением тригонометрии.

Задача. На наклонной плоскости, составляющей с горизонтом угол 24,5 о , находится тело массой 90 кг. Найдите, с какой силой это тело давит на наклонную плоскость (т.е какое давление оказывает тело на эту плоскость).

Решение:

Обозначив оси Х и У, начнем строить проекции сил на оси, для начала воспользовавшись данной формулой:

ma = N + mg , затем смотрим на рисунок,

Х : ma = 0 + mg sin24,5 0

Y: 0 = N – mg cos24,5 0

N = mg cos 24,5 0

подставляем массу, находим, что сила равна 819 Н.

Ответ: 819 Н

Тригонометрия в медицине и биологии

Одно из фундаментальных свойств живой природы - это цикличность большинства происходящих в ней процессов.

Биологические ритмы, биоритмы – это более или менее регулярные изменения характера и интенсивности биологических процессов.

Основной земной ритм – суточный.

Модель биоритмов можно построить с помощью тригонометрических функций.

Для построения модели биоритмов необходимо ввести дату рождения человека, дату отсчета (день, месяц, год) и длительность прогноза (количество дней).

Даже некоторые участки головного мозга называются синусами.

Стенки синусов образованы твёрдой мозговой оболочкой, выстланной эндотелием. Просвет синусов зияет, клапаны и мышечная оболочка, в отличие от других вен, отсутствуют. В полости синусов располагаются покрытые эндотелием волокнистые перегородки. Из синусов кровь поступает во внутренние ярёмные вены, помимо этого существует связь синусов с венами наружной поверхности черепа посредством резервных венозных выпускников.

Движение рыб в воде происходит по закону синуса или косинуса, если зафиксировать точку на хвосте, а потом рассмотреть траекторию движения.

При плавании тело рыбы принимает форму кривой, которая напоминает график

функции y = tgx .

Тригонометрия в музыке

Мы слушаем музыку в формате mp3.

Звуковой сигнал – это волна, вот её «график».

Как можно увидеть – это хотя и очень сложная, но синусоида, подчиняющаяся законам тригонометрии.

Во МХАТе весной 2003 года состоялась презентация альбома «Тригонометрия» группы «Ночные снайперы», солистка Диана Арбенина. Содержание альбома раскрывает первоначальное значение слова «тригонометрия» - измерение Земли.

Тригонометрия в информатике

Тригонометрические функции можно использовать для точных расчётов.

С помощью тригонометрических функций можно приблизить любую

(в некотором смысле "хорошую") функцию, разложив её в ряд Фурье:

a 0 + a 1 cos x + b 1 sin x + a 2 cos 2x + b 2 sin 2x + a 3 cos 3x + b 3 sin 3x + ...

Подбирая подходящим образом числа a 0 , a 1 , b 1 , a 2 , b 2 , ..., можно в виде такой (бесконечной) суммы представлять почти любые функции в компьютере с требуемой точностью.

Тригонометрические функции оказываются полезными при работе с графической информацией. Необходимо промоделировать (описать в компьютере) вращение некоторого объекта вокруг некоторой оси. Возникает поворот на некоторый угол. Чтобы определить при этом координаты точек придётся умножать на синусы и косинусы.

Джастин Уиндел, программист и дизайнер из Google Grafika Lab , опубликовал демо, показывающее примеры использования тригонометрических функций для создания динамической анимации.

Тригонометрия в строительстве и геодезии

Длины сторон и величины углов произвольного треугольника на плоскости связаны между собой определенными соотношениями, важнейшие из которых называют теоремами косинусов и синусов.

2 ab

= =

В этих формулах а, b , c – длины сторон треугольника АВС, лежащих соответственно против углов А, В, С. Эти формулы позволяют по трем элементам треугольника – длинам сторон и углам – восстановить остальные три элемента. Они применяются при решении практических задач, например в геодезии.

Вся "классическая" геодезия основана на тригонометрии. Поскольку фактически с древних времён геодезисты занимаются тем, что "решают" треугольники.

Процесс строительства зданий, дорог, мостов и других сооружений начинается с изыскательских и проектных работ. Все измерения на стройке проводятся с помощью геодезических инструментов, таких как теодолит и тригонометрический нивелир. При тригонометрическом нивелировании определяют разность высот между несколькими точками земной поверхности.

Заключение

    Тригонометрия была вызвана к жизни необходимостью производить измерения углов, но со временем развилась и в науку о тригонометрических функциях.

    Тригонометрия тесно связана с физикой, встречается в природе, музыке, архитектуре, медицине и технике.

    Тригонометрия нашла отражение в нашей жизни, и сферы, в которых она играет важную роль, будут расширяться, поэтому знание её законов необходимо каждому.

    Связь математики с окружающим миром позволяет «материализовать» знания школьников. Это помогает нам лучше понять жизненную необходимость знаний, приобретаемых в школе.

    Под математической задачей с практическим содержанием (задачей прикладного характера) мы понимаем задачу, фабула которой раскрывает приложения математики в смежных учебных дисциплинах, технике, в быту.

    Рассказ о исторических причинах возникновения тригонометрии, ее развитии и практическом применении побуждает у нас – школьников интерес к изучаемому предмету, формирует наше мировоззрение и повышает общую культуру.

Данная работа будет полезна для учащихся старших классов, которые ещё не увидели всю красоту тригонометрии и не знакомы с областями её применения в окружающей жизни.

Список литературы:

Синус, косинус, тангенс - при произнесении этих слов в присутствии учеников старших классов можно быть уверенным, что две трети из них потеряют интерес к дальнейшему разговору. Причина кроется в том, что основы тригонометрии в школе преподаются в полном отрыве от реальности, а потому учащиеся не видят смысла в изучении формул и теорем.

В действительности данная область знаний при ближайшем рассмотрении оказывается весьма интересной, а также прикладной - тригонометрия находит применение в астрономии, строительстве, физике, музыке и многих других областях.

Ознакомимся с основными понятиями и назовем несколько причин изучить этот раздел математической науки.

История

Неизвестно, в какой момент времени человечество начало создавать будущую тригонометрию с нуля. Однако документально зафиксировано, что уже во втором тысячелетии до нашей эры египтяне были знакомы с азами этой науки: археологами найден папирус с задачей, в которой требуется найти угол наклона пирамиды по двум известным сторонам.

Более серьезных успехов достигли ученые Древнего Вавилона. На протяжении веков занимаясь астрономией, они освоили ряд теорем, ввели особые способы измерения углов, которыми, кстати, мы пользуемся сегодня: градусы, минуты и секунды были заимствованы европейской наукой в греко-римской культуре, в которую данные единицы попали от вавилонян.

Предполагается, что знаменитая теорема Пифагора, относящаяся к основам тригонометрии, была известна вавилонянам почти четыре тысячи лет назад.

Название

Дословно термин «тригонометрия» можно перевести как «измерение треугольников». Основным объектом изучения в рамках данного раздела науки на протяжении многих веков был прямоугольный треугольник, а точнее - взаимосвязь между величинами углов и длинами его сторон (сегодня с этого раздела начинается изучение тригонометрии с нуля). В жизни нередки ситуации, когда практически измерить все требуемые параметры объекта (или расстояние до объекта) невозможно, и тогда возникает необходимость недостающие данные получить посредством расчётов.

Например, в прошлом человек не мог измерить расстояние до космических объектов, а вот попытки эти расстояния рассчитать встречаются задолго до наступления нашей эры. Важнейшую роль играла тригонометрия и в навигации: обладая некоторыми знаниями, капитан всегда мог сориентироваться ночью по звездам и скорректировать курс.

Основные понятия

Для освоения тригонометрии с нуля требуется понять и запомнить несколько основных терминов.

Синус некоторого угла - это отношение противолежащего катета к гипотенузе. Уточним, что противолежащий катет - это сторона, лежащая напротив рассматриваемого нами угла. Таким образом, если угол составляет 30 градусов, синус этого угла всегда, при любом размере треугольника, будет равен ½. Косинус угла - это отношение прилежащего катета к гипотенузе.

Тангенс - это отношение противолежащего катета к прилежащему (либо, что то же самое, отношение синуса к косинусу). Котангенс - это единица, деленная на тангенс.

Стоит упомянуть и знаменитое число Пи (3,14…), которое представляет собой половину длины окружности с радиусом в одну единицу.

Популярные ошибки

Люди, изучающие тригонометрию с нуля, совершают ряд ошибок - в основном по невнимательности.

Во-первых, при решении задач по геометрии необходимо помнить, что использование синусов и косинусов возможно только в прямоугольном треугольнике. Случается, что учащийся «на автомате» принимает за гипотенузу самую длинную сторону треугольника и получает неверные результаты вычислений.

Во-вторых, поначалу легко перепутать значения синуса и косинуса для выбранного угла: напомним, что синус 30 градусов численно равен косинусу 60, и наоборот. При подстановке неверного числа все дальнейшие расчёты окажутся неверными.

В-третьих, пока задача полностью не решена, не стоит округлять какие бы то ни было значения, извлекать корни, записывать обыкновенную дробь в виде десятичной. Часто ученики стремятся получить в задаче по тригонометрии «красивое» число и сразу же извлекают корень из трёх, хотя ровно через одно действие этот корень можно будет сократить.

Этимология слова «синус»

История слова «синус» поистине необычна. Дело в том, что буквальный перевод этого слова с латыни означает «впадина». Всё потому, что верное понимание слова затерялось при переводе с одного языка на другой.

Названия базовых тригонометрических функций произошли из Индии, где понятие синуса обозначалось словом «тетива» на санскрите - дело в том, что отрезок вместе с дугой окружности, на которую он опирался, походил на лук. Во времена расцвета арабской цивилизации индийские достижения в области тригонометрии были заимствованы, и термин перешел в арабский язык в виде транскрипции. Случилось так, что в этом языке уже было похожее слово, обозначающее впадину, и если арабы понимали фонетическую разницу между родным и заимствованным словом, то европейцы, переводящие научные трактаты на латынь, по ошибке буквально перевели арабское слово, никакого отношения к понятию синуса не имеющее. Им мы и пользуемся по сей день.

Таблицы значений

Существуют таблицы, в которые занесены числовые значения для синусов, косинусов и тангенсов всех возможных углов. Ниже представим данные для углов в 0, 30, 45, 60 и 90 градусов, которые необходимо выучить как обязательный раздел тригонометрии для «чайников», благо запомнить их довольно легко.

Если случилось так, что числовое значение синуса или косинуса угла «вылетело из головы», есть способ вывести его самостоятельно.

Геометрическое представление

Начертим круг, через его центр проведем оси абсцисс и ординат. Ось абсцисс располагается горизонтально, ось ординат - вертикально. Обычно они подписываются как «X» и «Y» соответственно. Теперь из центра окружности проведем прямую таким образом, чтобы между ней и осью X получился нужный нам угол. Наконец, из той точки, где прямая пересекает окружность, опустим перпендикуляр на ось X. Длина получившегося отрезка будет равна численному значению синуса нашего угла.

Данный способ весьма актуален, если вы забыли нужное значение, например, на экзамене, и учебника по тригонометрии под рукой нет. Точной цифры вы таким образом не получите, но разницу между ½ и 1,73/2 (синус и косинус угла в 30 градусов) вы точно увидите.

Применение

Одними из первых специалистов, использующих тригонометрию, были моряки, не имеющие никакого другого ориентира в открытом море, кроме неба над головой. Сегодня капитаны кораблей (самолётов и других видов транспорта) не ищут кратчайший путь по звёздам, зато активно прибегают к помощи GPS-навигации, которая без использования тригонометрии была бы невозможна.

Практически в каждом разделе физики вас ждут расчёты с использованием синусов и косинусов: будь то приложение силы в механике, расчёты пути объектов в кинематике, колебания, распространение волн, преломление света - без базовой тригонометрии в формулах просто не обойтись.

Ещё одна профессия, которая немыслима без тригонометрии - это геодезист. Используя теодолит и нивелир либо более сложный прибор - тахиометр, эти люди измеряют разницу в высоте между различными точками на земной поверхности.

Повторяемость

Тригонометрия имеет дело не только с углами и сторонами треугольника, хотя именно с этого она начинала своё существование. Во всех областях, где присутствует цикличность (биологии, медицине, физике, музыке и т. д.) вы встретитесь с графиком, название которого наверняка вам знакомо - это синусоида.

Такой график представляет собой развёрнутую вдоль оси времени окружность и внешне похож на волну. Если вы когда-нибудь работали с осциллографом на занятиях по физике, вы понимаете, о чем идет речь. Как музыкальный эквалайзер, так и прибор, отображающий сердечные ритмы, используют формулы тригонометрии в своей работе.

В заключение

Задумываясь о том, как выучить тригонометрию, большинство учащихся средней и старшей школы начинают считать её сложной и непрактичной наукой, поскольку знакомятся лишь со скучной информацией из учебника.

Что касается непрактичности - мы уже увидели, что в той или иной степени умение обращаться с синусами и тангенсами требуется практически в любой сфере деятельности. А что касается сложности… Подумайте: если люди пользовались этими знаниями больше двух тысяч лет назад, когда взрослый человек имел меньше знаний, чем сегодняшний старшеклассник, реально ли изучить данную область науки на базовом уровне лично вам? Несколько часов вдумчивых занятий с решением задач - и вы достигнете своей цели, изучив базовый курс, так называемую тригонометрию для «чайников».

    Тригонометрия в астрономии:

    Потребность в решении треугольников раньше всего обнаружилась в астрономии; поэтому, в течение долгого времени тригонометрия развивалась и изучалась как один из разделов астрономии.

    Составленные Гиппархом таблицы положений Солнца и Луны позволили предвычислять моменты наступления затмений (с ошибкой 1—2 ч). Гиппарх впервые стал использовать в астрономии методы сферической тригонометрии. Он повысил точность наблюдений, применив для наведения на светило крест нитей в угломерных инструментах — секстантах и квадрантах. Ученый составил огромный по тем временам каталог положений 850 звезд, разделив их по блеску на 6 степеней (звездных величин). Гиппарх ввел географические координаты — широту и долготу, и его можно считать основателем математической географии. (ок. 190 до н. э. — ок. 120 до н. э.)


    Полное решение задачи об определении всех элементов плоского или сферического треугольников по трем данным элементам, важные разложения sin пх и cos пх по степеням cos х и sinx. Знание формулы синусов и косинусов кратных дуг дало возможность Виету решить уравнение 45-й степени, предложенное математиком А. Рооменом; Виет показал, что решение этого уравнения сводится к разделению угла на 45 равных частей и что существуют 23 положительных корня этого уравнения. Виет решил задачу Аполлония с помощью линейки и циркуля.
    Решение сферических треугольников- одна из задач астрономии Вычислять стороны и углы любого сферического треугольника по трем подходящим образом заданным сторонам или углам позволяют следующие теоремы: (теорема синусов) (теорема косинусов для углов) (теорема косинусов для сторон).

    Тригонометрия в физике:

    виды колебательных явлений.

    Гармоническое колебание — явление периодического изменения какой-либо величины, при котором зависимость от аргумента имеет характер функции синуса или косинуса. Например, гармонически колеблется величина, изменяющаяся во времени следующим образом:

    Где х — значение изменяющейся величины, t — время, А — амплитуда колебаний, ω — циклическая частота колебаний, — полная фаза колебаний, r — начальная фаза колебаний.

    Механические колебания . Механическими колебаниями

    Тригонометрия в природе.

    Мы часто задаем вопрос

  • Одно из фундаментальных свойств
  • - это более или менее регулярные изменения характера и интенсивности биологических процессов.
  • Основной земной ритм - суточный.

Тригонометрия в биологии

  • Тригонометрия играет важную роль в медицине. С ее помощью иранские ученые открыли формулу сердца - комплексное алгебраически-тригонометрическое равенство, состоящее из 8 выражений, 32 коэффициентов и 33 основных параметров, включая несколько дополнительных для расчетов в случаях аритмии.
  • диатоническая гамма 2:3:5

Тригонометрия в архитектуре

  • Страховая корпорация Swiss Re в Лондоне
  1. Интерпретация

Мы привели лишь малую часть того, где можно встретить тригонометрические функции.. Мы выяснили

Мы доказали, что тригонометрия тесно связана с физикой, встречается в природе, медицине. Можно приводить бесконечно много примеров периодических процессов живой и неживой природы. Все периодические процессы можно описать с помощью тригонометрических функций и изобразить на графиках

Мы думаем, что тригонометрия нашла отражение в нашей жизни, и сферы,

в которых она играет важную роль, будут расширяться.

  • Выяснили , что тригонометрия была вызвана к жизни необходимостью производить измерения углов, но со временем развилась и в науку о тригонометрических функциях.
  • Доказали
  • Думаем

Просмотр содержимого документа
«Данилова Т.В.-сценарий»

МКОУ «Ненецкая общеобразовательная средняя школа – интернат им. А.П.Пырерки»

Учебный проект

" "

Данилова Татьяна Владимировна

Учитель математики

    Обоснование актуальности проекта.

Тригонометрия - это раздел математики, изучающий тригонометрические функции. Сложно представить, но с этой наукой мы сталкиваемся не только на уроках математики, но и в нашей повседневной жизни. Вы могли не подозревать об этом, но тригонометрия встречается в таких науках, как физика, биология, не последнюю роль она играет и в медицине, и, что самое интересное, без нее не обошлось даже в музыке и архитектуре.
Слово тригонометрия впервые появляется в 1505 году в заглавии книги немецкого математика Питискуса.
Тригонометрия – слово греческое, и в буквальном переводе означает измерение треугольников (trigonan – треугольник, metreo - измеряю).
Возникновение тригонометрии было тесно связано с землемерием, астрономией и строительным делом.…

Школьник в 14-15 лет не всегда знает, куда пойдет учиться и где будет работать.
Для некоторых профессий ее знание необходимо, т.к. позволяет измерять расстояния до недалёких звёзд в астрономии, между ориентирами в географии, контролировать системы навигации спутников. Принципы тригонометрии, используются и в таких областях, как теория музыки, акустика, оптика, анализ финансовых рынков, электроника, теория вероятностей, статистика, биология, медицина (включая ультразвуковое исследование (УЗИ) и компьютерную томографию), фармацевтика, химия, теория чисел (и, как следствие, криптография), сейсмология, метеорология, океанология, картография, многие разделы физики, топография и геодезия, архитектура, фонетика, экономика, электронная техника, машиностроение, компьютерная графика, кристаллография.

    Определение предмета исследования

3. Цели проекта.

    Проблемный вопрос
    1. Какие понятия тригонометрии чаще всего используются в реальной жизни?
    2. Какую роль играет тригонометрия в астрономии, физике, биологии и медицине?
    3. Как связаны архитектура, музыка и тригонометрия?

    Гипотеза

    Проверка гипотезы

Тригонометрия (от греч. trigonon – треугольник, metro – метрия) –

История тригонометрии:

Древние люди вычисляли высоту дерева, сравнивая длину его тени с длиной тени от шеста, высота которого была известна. По звездам вычисляли местонахождение корабля в море.

Следующий шаг в развитии тригонометрии был сделан индийцами в период с V по XII в.

Сам термин косинус появился значительно позднее в работах европейских ученых впервые в конце XVI в.из так называемого «синуса дополнения», т.е. синуса угла, дополняющего данный угол до 90°. «Синус дополнения» или (по латыни) sinus complementi стали сокращенно записывать как sinus co или co -sinus .

В XVII – XIX вв. тригонометрия становится одной из глав математического анализа.

Она находит большое применение в механике, физике и технике, особенно при изучении колебательных движений и других периодических процессов.

Жан Фурье доказал, что всякое периодическое движение может быть представлено (с любой степенью точности) в виде суммы простых гармонических колебаний.

в систему математического анализа.

Где применяется тригонометрия

Тригонометрические вычисления применяются практически во всех сферах жизнедеятельности людей. Следует отметить применение в таких областях как: астрономия, физика, природа, биология, музыка, медицина и многие другие.

Тригонометрия в астрономии:

Потребность в решении треугольников раньше всего обнаружилась в астрономии; поэтому, в течение долгого времени тригонометрия развивалась и изучалась как один из разделов астрономии.

Потребность в решении треугольников раньше всего обнаружилась в астрономии; поэтому, в течение долгого времени тригонометрия развивалась и изучалась как один из разделов астрономии.

Достижения Виета в тригонометрии
Полное решение задачи об определении всех элементов плоского или сферического треугольников по трем данным элементам, важные разложения sin пх и cos пх по степеням cos х и sinx. Знание формулы синусов и косинусов кратных дуг дало возможность Виету решить уравнение 45-й степени, предложенное математиком А. Рооменом; Виет показал, что решение этого уравнения сводится к разделению угла на 45 равных частей и что существуют 23 положительных корня этого уравнения. Виет решил задачу Аполлония с помощью линейки и циркуля.
Решение сферических треугольников- одна из задач астрономии Вычислять стороны и углы любого сферического треугольника по трем подходящим образом заданным сторонам или углам позволяют следующие теоремы: (теорема синусов) (теорема косинусов для углов) (теорема косинусов для сторон).

Тригонометрия в физике:

В окружающем нас мире приходится сталкиваться с периодическими процессами, которые повторяются через одинаковые промежутки времени. Эти процессы называются колебательными. Колебательные явления различной физической природы подчиняются общим закономерностям и описываются одинаковыми уравнениями. Существуют разные виды колебательных явлений.

Гармоническое колебание - явление периодического изменения какой-либо величины, при котором зависимость от аргумента имеет характер функции синуса или косинуса. Например, гармонически колеблется величина, изменяющаяся во времени следующим образом:

Где х - значение изменяющейся величины, t - время, А - амплитуда колебаний, ω - циклическая частота колебаний, - полная фаза колебаний, r - начальная фаза колебаний.

Обобщенное гармоническое колебание в дифференциальном виде x’’ + ω²x = 0.

Механические колебания . Механическими колебаниями называют движения тел, повторяющиеся точно через одинаковые промежутки времени. Графическое изображение этой функции дает наглядное представление о протекании колебательного процесса во времени. Примерами простых механических колебательных систем могут служить груз на пружине или математический маятник.

Тригонометрия в природе.

Мы часто задаем вопрос «Почему мы иногда видим то, чего нет на самом деле?» . Для исследования предложены следующие вопросы: «Как возникает радуга? Северное сияние?», «Что такое оптические иллюзии?» ,«Как тригонометрия может помочь найти ответы на эти вопросы?».

Впервые теория радуги была дана в 1637 году Рене Декартом. Он объяснил радугу, как явление, связанное с отражением и преломлением света в дождевых каплях.

Северное сияние Проникновение в верхние слои атмосферы планет заряженных частиц солнечного ветра определяется взаимодействием магнитного поля планеты с солнечным ветром.

Сила, действующая на движущуюся в магнитном поле заряженную частицу называется силой Лоренца. Она пропорциональна заряду частицы и векторному произведению поля и скорости движения частицы.

    Американские ученые утверждают, что мозг оценивает расстояние до объектов, измеряя угол между плоскостью земли и плоскостью зрения.

    К тому же в биологии используется такое понятие как синус сонный, синус каротидный и венозный или пещеристый синус.

    Тригонометрия играет важную роль в медицине. С ее помощью иранские ученые открыли формулу сердца - комплексное алгебраически-тригонометрическое равенство, состоящее из 8 выражений, 32 коэффициентов и 33 основных параметров, включая несколько дополнительных для расчетов в случаях аритмии.

    Одно из фундаментальных свойств живой природы - это цикличность большинства происходящих в ней процессов.

    Биологические ритмы, биоритмы

    Основной земной ритм – суточный.

    Модель биоритмов можно построить с помощью тригонометрических функций.

Тригонометрия в биологии

Какие биологические процессы связаны с тригонометрией?

    Тригонометрия играет важную роль в медицине. С ее помощью иранские ученые открыли формулу сердца - комплексное алгебраически-тригонометрическое равенство, состоящее из 8 выражений, 32 коэффициентов и 33 основных параметров, включая несколько дополнительных для расчетов в случаях аритмии.

    Биологические ритмы, биоритмы связаны с тригонометрией

    Модель биоритмов можно построить с помощью графиков тригонометрических функций. Для этого необходимо ввести дату рождения человека (день, месяц, год) и длительность прогноза

Движение рыб в воде происходит по закону синуса или косинуса, если зафиксировать точку на хвосте, а потом рассмотреть траекторию движения.

Возникновение музыкальной гармонии

    Согласно дошедшим из древности преданиям, первыми, кто попытался сделать это, были Пифагор и его ученики.

    Частоты, соответствующие одной и той же ноте в первой, второй и т.д. октавах, относятся, как 1:2:4:8…

    диатоническая гамма 2:3:5

Тригонометрия в архитектуре

    Детская школа Гауди в Барселоне

    Страховая корпорация Swiss Re в Лондоне

    Феликс Кандела Ресторан в Лос-Манантиалесе

    Интерпретация

Мы привели лишь малую часть того, где можно встретить тригонометрические функции.. Мы выяснили, что тригонометрия была вызвана к жизни необходимостью производить измерения углов, но со временем развилась и в науку о тригонометрических функциях.

Мы доказали, что тригонометрия тесно связана с физикой, встречается в природе, медицине. Можно приводить бесконечно много примеров периодических процессов живой и неживой природы. Все периодические процессы можно описать с помощью тригонометрических функций и изобразить на графиках

Мы думаем, что тригонометрия нашла отражение в нашей жизни, и сферы,

в которых она играет важную роль, будут расширяться.

    Выяснили , что тригонометрия была вызвана к жизни необходимостью производить измерения углов, но со временем развилась и в науку о тригонометрических функциях.

    Доказали , что тригонометрия тесно связана с физикой, встречается в природе, музыке, астрономии и медицине.

    Думаем , что тригонометрия нашла отражение в нашей жизни, и сферы, в которых она играет важную роль, будут расширяться.

7. Литература.

    Программа Maple6, реализующий изображение графиков

    «Википедия»

    Учеба.ru

    Math.ru «библиотека»

Просмотр содержимого презентации
«Данилова Т.В.»

" Тригонометрия в окружающем нас мире и жизни человека "



Цели исследования:

Связь тригонометрии с реальной жизнью.


Проблемный вопрос 1. Какие понятия тригонометрии чаще всего используются в реальной жизни? 2. Какую роль играет тригонометрия в астрономии, физике, биологии и медицине? 3. Как связаны архитектура, музыка и тригонометрия?


Гипотеза

Большинство физических явлений природы, физиологический процессов, закономерностей в музыке и искусстве можно описать с помощью тригонометрии и тригонометрических функций.


Что такое тригонометрия???

Тригонометрия (от греч. trigonon – треугольник, metro – метрия) – микрораздел математики, в котором изучаются зависимости между величинами углов и длинами сторон треугольников, а также алгебраические тождества тригонометрических функций.



История тригонометрии

Истоки тригонометрии берут начало в древнем Египте, Вавилонии и долине Инда более 3000 лет назад.

Слово тригонометрия впервые встречается в 1505 году в заглавии книги немецкого математика Питискуса.

Впервые способы решения треугольников, основанные на зависимостях между сторонами и углами треугольника, были найдены древнегреческими астрономами Гиппархом и Птолемеем.

Древние люди вычисляли высоту дерева, сравнивая длину его тени с длиной тени от шеста, высота которого была известна.

По звездам вычисляли местонахождение корабля в море.


Следующий шаг в развитии тригонометрии был сделан индийцами в период с V по XII в.

В отличие от греков инд ийцы стали рассматривать и употреблять в вычислениях уже не целую хорду ММ соответствующего центрального угла, а только ее половину МР, т. е. синуса - половины центрального угла.

Сам термин косинус появился значительно позднее в работах европейских ученых впервые в конце XVI в.из так называемого « синуса дополнения » , т.е. синуса угла, дополняющего данный угол до 90 . « Синус дополнения » или (по латыни) sinus complementi стали сокращенно записывать как sinus co или co-sinus.

Наряду с синусом индийцы ввели в тригонометрию косинус , точнее говоря, стали употреблять в своих вычислениях линию косинуса. Им были известны также соотношения cos =sin(90 - ) и sin 2 +cos 2 =r 2 , а также формулы для синуса суммы и разности двух углов.


В XVII – XIX вв. тригонометрия становится

одной из глав математического анализа.

Она находит большое применение в механике,

физике и технике, особенно при изучении

колебательных движений и других

периодических процессов.

О свойствах периодичности тригонометрических функций знал еще Виет, первые математические исследования которого относились к тригонометрии.

Доказал, что всякое периодическое

движение может быть

представлено (с любой степенью

точности) в виде суммы простых

гармонических колебаний.


Основоположник аналитической

теории

тригонометрических функций .

Леонард Эйлер

Во «Введении в анализ бесконечных» (1748 г)

трактует синус, косинус и т.д. не как

тригонометрические линии, обязательно

связанные с окружностью, а как

тригонометрические функции, которые он

рассматривал как отношения сторон

прямоугольного треугольника, как числовые

величины.

Исключил из своих формул

R – целый синус, принимая

R = 1, и упростил таким

образом записи и вычисления.

Разрабатывает учение

о тригонометрических функциях

любого аргумента.


В XIX веке продолжил

развитие теории

тригонометрических

функций.

Н.И.Лобачевский

« Геометрические рассмотрения,- пишет Лобачевский,- необходимы до тех пор в начале тригонометрии, покуда они не послужат к открытию отличительного свойства тригонометрических функций… Отсюда делается тригонометрия совершенно независимой от геометрии и имеет все достоинства анализа».


Стадии развития тригонометрии:

  • Тригонометрия была вызвана к жизни необходимостью производить измерения углов.
  • Первыми шагами тригонометрии было установление связей между величиной угла и отношением специально построенных отрезков прямых. Результат - возможность решать плоские треугольники.
  • Необходимость табулировать значения вводимых тригонометрических функций.
  • Тригонометрические функции превращались в самостоятельные объекты исследований.
  • В XVIII в. тригонометрические функции были включены

в систему математического анализа.


Где применяется тригонометрия

Тригонометрические вычисления применяются практически во всех сферах жизнедеятельности людей. Следует отметить применение в таких областях как: астрономия, физика, природа, биология, музыка, медицина и многие другие.


Тригонометрия в астрономии

Потребность в решении треугольников раньше всего обнаружилась в астрономии; поэтому, в течение долгого времени тригонометрия развивалась и изучалась как один из разделов астрономии.

Значительных высот достигла тригонометрия и у индийских средневековых астрономов.

Главным достижением индийских астрономов стала замена хорд

синусами, что позволило вводить различные функции, связанные

со сторонами и углами прямоугольного треугольника.

Таким образом, в Индии было положено начало тригонометрии

как учению о тригонометрических величинах.


Составленные Гиппархом таблицы положений Солнца и Луны позволили предвычислять моменты наступления затмений (с ошибкой 1-2 ч). Гиппарх впервые стал использовать в астрономии методы сферической тригонометрии. Он повысил точность наблюдений, применив для наведения на светило крест нитей в угломерных инструментах - секстантах и квадрантах. Ученый составил огромный по тем временам каталог положений 850 звезд, разделив их по блеску на 6 степеней (звездных величин). Гиппарх ввел географические координаты - широту и долготу, и его можно считать основателем математической географии. (ок. 190 до н. э. - ок. 120 до н. э.)

Гиппарх



Тригонометрия в физике

В окружающем нас мире приходится сталкиваться с периодическими процессами, которые повторяются через одинаковые промежутки времени. Эти процессы называются колебательными. Колебательные явления различной физической природы подчиняются общим закономерностям и описываются одинаковыми уравнениями. Существуют разные виды колебательных явлений, например:

Механические колебания

Гармонические колебания


Гармонические колебания

Гармоническое колебание - явление периодического изменения какой-либо величины, при котором зависимость от аргумента имеет характер функции синуса или косинуса. Например, гармонически колеблется величина, изменяющаяся во времени следующим образом:

или

Где х - значение изменяющейся величины, t - время, А - амплитуда колебаний, ω - циклическая частота колебаний, - полная фаза колебаний, r - начальная фаза колебаний.

Обобщенное гармоническое колебание в дифференциальном виде x’’ + ω²x = 0.


Механические колебания

Механическими колебаниями называют движения тел, повторяющиеся точно через одинаковые промежутки времени. Графическое изображение этой функции дает наглядное представление о протекании колебательного процесса во времени.

Примерами простых механических колебательных систем могут служить груз на пружине или математический маятник.


Математический маятник

На рисунке изображены колебания маятника, он движется по кривой, называемой косинусом.


Траектория пули и проекции векторов на оси X и Y

Из рисунка видно, что проекции векторов на оси Х и У соответственно равны

υ x = υ o cos α

υ y = υ o sin α


Тригонометрия в природе

Мы часто задаем вопрос «Почему мы иногда видим то, чего нет на самом деле?» . Для исследования предложены следующие вопросы: «Как возникает радуга? Северное сияние?», «Что такое оптические иллюзии?» ,«Как тригонометрия может помочь найти ответы на эти вопросы?».


Оптические иллюзии

естественные

искусственные

смешанные


Теория радуги

Радуга возникает из-за того, что солнечный свет испытывает преломление в капельках воды, взвешенных в воздухе по закону преломления:

Впервые теория радуги была дана в 1637 году Рене Декартом. Он объяснил радугу, как явление, связанное с отражением и преломлением света в дождевых каплях.

sin α / sin β = n 1 / n 2

где n 1 =1, n 2 ≈1,33 – соответственно показатели преломления воздуха и воды, α – угол падения, а β – угол преломления света.


Северное сияние

Проникновение в верхние слои атмосферы планет заряженных частиц солнечного ветра определяется взаимодействием магнитного поля планеты с солнечным ветром.

Сила, действующая на движущуюся в магнитном поле заряженную частицу называется силой Лоренца. Она пропорциональна заряду частицы и векторному произведению поля и скорости движения частицы.


  • Американские ученые утверждают, что мозг оценивает расстояние до объектов, измеряя угол между плоскостью земли и плоскостью зрения.
  • К тому же в биологии используется такое понятие как синус сонный, синус каротидный и венозный или пещеристый синус.
  • Тригонометрия играет важную роль в медицине. С ее помощью иранские ученые открыли формулу сердца - комплексное алгебраически-тригонометрическое равенство, состоящее из 8 выражений, 32 коэффициентов и 33 основных параметров, включая несколько дополнительных для расчетов в случаях аритмии.

  • Одно из фундаментальных свойств живой природы - это цикличность большинства происходящих в ней процессов.
  • Биологические ритмы, биоритмы – это более или менее регулярные изменения характера и интенсивности биологических процессов.
  • Основной земной ритм – суточный.
  • Модель биоритмов можно построить с помощью тригонометрических функций.

Тригонометрия в биологии

Какие биологические процессы связаны с тригонометрией?

  • Тригонометрия играет важную роль в медицине. С ее помощью иранские ученые открыли формулу сердца - комплексное алгебраически-тригонометрическое равенство, состоящее из 8 выражений, 32 коэффициентов и 33 основных параметров, включая несколько дополнительных для расчетов в случаях аритмии.
  • Биологические ритмы, биоритмы связаны с тригонометрией.

  • Модель биоритмов можно построить с помощью графиков тригонометрических функций.
  • Для этого необходимо ввести дату рождения человека (день, месяц, год) и длительность прогноза.

Тригонометрия в биологии

Движение рыб в воде происходит по закону синуса или косинуса, если зафиксировать точку на хвосте, а потом рассмотреть траекторию движения.

При плавании тело рыбы принимает форму кривой, которая напоминает график функции y=tgx.



Возникновение музыкальной гармонии

  • Согласно дошедшим из древности преданиям, первыми, кто попытался сделать это, были Пифагор и его ученики.
  • Частоты, соответствующие

одной и той же ноте в первой, второй и т.д. октавах, относятся, как 1:2:4:8…

  • диатоническая гамма 2:3:5

У музыки есть своя геометрия

Тетраэдр из различных типов аккордов четырех звуков:

синий – малые интервалы;

более теплые тона - более «разряженные» звуки аккорда; красная сфера- наиболее гармоничный аккорд с равными интервалами между нотами.


cos 2 С + sin 2 С = 1

АС – расстояние от верха статуи до глаз человека,

АН – высота статуи,

sin С - синус угла падения взгляда.


Тригонометрия в архитектуре

Детская школа Гауди в Барселоне


Страховая корпорация Swiss Re в Лондоне

y = f (λ)cos θ

z = f (λ)sin θ


Феликс Кандела Ресторан в Лос-Манантиалесе


  • Выяснили , что тригонометрия была вызвана к жизни необходимостью производить измерения углов, но со временем развилась и в науку о тригонометрических функциях.
  • Доказали , что тригонометрия тесно связана с физикой, встречается в природе, музыке, астрономии и медицине.
  • Думаем , что тригонометрия нашла отражение в нашей жизни, и сферы, в которых она играет важную роль, будут расширяться.

Тригонометрия прошла длинный путь развития. И теперь, мы можем с уверенностью сказать, что тригонометрия не зависит от других наук, а другие науки зависят от тригонометрии.


  • Маслова Т.Н. «Справочник школьника по математике»
  • Программа Maple6, реализующий изображение графиков
  • «Википедия»
  • Учеба.ru
  • Math.ru «библиотека»
  • История математики с Древнейших времен до начала XIX столетия в 3-х томах// под ред. А. П. Юшкевича. Москва, 1970г. – том 1-3 Э. Т. Бэлл Творцы математики.
  • Предшественники современной математики// под ред. С. Н. Ниро. Москва,1983г. А. Н. Тихонов, Д. П. Костомаров.
  • Рассказы о прикладной математике//Москва, 1979г. А. В. Волошинов. Математика и искусство// Москва, 1992г. Газета Математика. Приложение к газете от 1.09.98г.
  1. Повторить основные формулы тригонометрии и закрепить их знания в ходе выполнения упражнений;
  2. Развивать навыки самоконтроля, умений работать с компьютерной презентацией.
  3. Воспитание ответственного отношения к учебному труду, воли и настойчивости для достижения конечных результатов.

Оборудование: Компьютеры, компьютерная презентация.

Ожидаемый результат:

  1. Каждый ученик должен знать формулы тригонометрии и уметь применять их для преобразования тригонометрических выражений на уровне обязательных результатов.
  2. Знать вывод этих формул и уметь применять их для преобразования тригонометрических выражений.
  3. Знать формулы тригонометрии, уметь выводить эти формулы и применять их для более сложных тригонометрических выражений.

Основные этапы урока:

  1. Сообщение темы, цели, задач урока и мотивация учебной деятельности.
  2. Устный счёт
  3. Сообщение из истории математики
  4. Повторение (с 9 класса) формул тригонометрии с помощью компьютерной презентации
  5. Применение тригонометрических формул к преобразованию выражений
  6. Выполнение теста
  7. Подведение итогов урока
  8. Постановка задания на дом

Ход урока

I. Организационный момент.

Сообщение темы, цели, задач урока и мотивация учебной деятельности

II. Устная работа (задания заранее распечатаны у каждого учащегося):

Радианная мера двух углов треугольника равна и . Найдите градусную меру каждого из углов треугольника. Ответ : 60, 30, 90

Найдите радианную меру углов треугольника, если их величины относятся как 2:3:4. Ответ: , ,

Может ли косинус быть равным: а) , б) , в), г) , д) -2 ? Ответ: а) да; б) нет; в) нет; г) да; д) да.

Может ли синус быть равным: а) –3, 7 б) , в)? Ответ: а) нет; б) да; в) нет.

При каких значения a и b справедливы следующие равенства: а) cos x = ; б)sin x=; в) cos x= ; г) tg x= ; д) sin x = a? Ответ: а) /a/ 7; б) /a/ ; в) 0 г) b – любое число; д) -

III. Сообщение из истории тригонометрии (краткая историческая справка):

Тригонометрия возникла и развивалась в древности как один из разделов астрономии, как её вычислительный аппарат, отвечающий практическим нуждам человека.

Некоторые тригонометрические сведения были известны древним вавилонянам и египтянам, но основы этой науки заложены в Древней Греции.

Греческий астроном Гиппарх во II в. до н. э. составил таблицу числовых значений хорд в зависимости от величин стягиваемых ими дуг. Более полные сведения из тригонометрии содержатся в известном “Альмагесте” Птолемея. Сделанные расчёты позволили Птолемею составить таблицу, которая содержала хорды от 0 до 180 .

Название линий синуса и косинуса впервые были введены индийскими учёными. Они же составили первые таблицы синусов, хотя и менее точные, чем птолемеевы.

В Индии начинается по существу учение о тригонометрических величинах, названное позже гониометрией (от “гониа” - угол и “метрио” - измеряю).

На пороге XVII в. в развитии тригонометрии начинается новое направление – аналитическое.

Тригонометрия даёт необходимый метод развития многих понятий и методы решения реальных задач, возникающих в физике, механике, астрономии, геодозии, картографии и других науках. Кроме этого, тригонометрия является большим помощником в решении стереометрических задач.

IV. Работа на компьютерах с презентацией:

“Основные формулы тригонометрии” (Приложение1)

Предварительно напомнить технику безопасности в кабинете информатики.

  • Основные тригонометрические тождества.
  • Формулы сложения.
  • Формулы приведения
  • Формулы суммы и разности синусов (косинусов).
  • Формулы двойного аргумента.
  • Формулы половинного аргумента.

V. Применение тригонометрических формул к преобразованию выражений.

а) Один учащийся выполняет задание на обороте доски, остальные с места проверяют и поднимают сигнальные карточки (верно – “+”, неверно – “- “) с места.

Выбрать ответ.

Упростить выражение 7 cos - 5.

а) 1+cos; б) 2; в) –12; г) 12

Упростить выражение 5 – 4 si n

а) 1; б) 9; в) 1+8sin; г) 1+cos.

Понравилась статья? Поделиться с друзьями: