Модифицированный алгоритм триангуляции делоне. Рис.3 - Разбиение Делоне двумерной системы точек. Основные определения и свойства

Для количественной оценки качества построенной триангуляции определим два типа критериев топологический и геометрически .

Топологический критерий основан на ближайших соседях точки из множества. В идеальном случае точка имеет для двумерной области 6 соседей, для трехмерной 12 соседей. Топологическую оценку получим с помощью формулы (1), где - общее количество точек в области, - степень или количество соседних точек с вязаных с внутренней точкой.

Геометрический критерий основан на разнице вписанной и описанной окружности вокруг расчетного треугольного элемента. Геометрическую оценку получим с помощью формулы (2), где - количество треугольников, - радиус вписанной окружности, - радиус описанной окружности.

Алгоритмы построения триангуляции

Для построения триангуляции существует большое количество алгоритмов. Они различаются между собой трудоёмкостью, сложностью реализации на ЭВМ, подходами к построению. Подробнее об алгоритмах можно узнать в книге А.В. Скворцова . Рассмотрим некоторые алгоритмы.

Одним из первых был предложен жадный алгоритм построения триангуляции. Триангуляция Делоне называется жадной, если она построена с помощью жадного алгоритма. Трудоемкость работы жадного алгоритма при некоторых его улучшениях составляет . В связи со столь большой трудоемкостью на практике он почти не применяется. Рассмотрим алгоритм по шагам:

Шаг 1. Генерируется список всех возможных отрезков, соединяющих пары исходных точек, и он сортируется по длинам отрезков.

Шаг 2. Начиная с самого короткого, последовательно выполняется вставка отрезков в триангуляцию. Если отрезок не пересекается с другими ранее вставленными отрезками, то он вставляется, иначе он отбрасывается.

Заметим, что если все возможные отрезки имеют разную длину, то результат работы этого алгоритма однозначен, иначе он зависит от порядка вставки отрезков одинаковой длины.

Итеративный алгоритм имеют в своей основе очень простую идею последовательного добавления точек в частично построенную триангуляцию Делоне. Сложность данного алгоритма складывается из трудоёмкости поиска треугольника, в который на очередном шаге добавляется точка, трудоёмкости построения новых треугольников, а также трудоёмкости соответствующих перестроений структуры триангуляции в результате неудовлетворительных проверок пар соседних треугольников полученной триангуляции на выполнение условия Делоне. Рассмотрим алгоритм по шагам:

Шаг 1. На первых трех исходных точках строим один треугольник.

Шаг 2. В цикле по для всех остальных точек выполняем шаги 3-5.

Шаг 3. Очередная -я точка добавляется в уже построенную структуру триангуляции следующим образом. Вначале производится локализация точки, т.е. находится треугольник (построенный ранее), в который попадает очередная точка. Либо, если точка не попадает внутрь триангуляции, находится треугольник на границе триангуляции, ближайший к очередной точке.

Шаг 4. Если точка попала на ранее вставленный узел триангуляции, то такая точка обычно отбрасывается, иначе точка вставляется в триангуляцию в виде нового узла. При этом если точка попала на некоторое ребро, то оно разбивается на два новых, а оба смежных с ребром треугольника также делятся на два меньших. Если точка попала строго внутрь какого-нибудь треугольника, он разбивается на три новых. Если точка попала вне триангуляции, то строится один или более треугольников.

Шаг 5. Проводятся локальные проверки вновь полученных треугольников на соответствие условию Делоне и выполняются необходимые перестроения.

При построении новых треугольников возможны две ситуации, когда добавляемая точка попадает либо внутрь триангуляции, либо вне её. В первом случае строятся новые треугольники и число выполняемых алгоритмом действий фиксировано. Во втором необходимо построение дополнительных внешних к текущей триангуляции треугольников, причём их количество может в худшем случае равняться? 3. Однако за все шаги работы алгоритма будет добавлено не более треугольников, где - общее число исходных точек. Поэтому в обоих случаях общее затрачиваемое время на построение треугольников составляет.

Цепной алгоритм один из первых эффективных алгоритмов построения триангуляции основан на процедуре регуляризации планарного графа и триангуляции монотонных многоугольников . Трудоемкость этого алгоритма составляет, где - количество исходных отрезков. Рассмотрим алгоритм по шагам:

Шаг 1. Из множества исходных структурных отрезков формируем связанный планарный граф (Рисунок 4,а).

Шаг 2. Выполняется регуляризация графа, т.е. добавляются новые рёбра, не пересекающие другие, так что каждая вершина графа становится смежной хотя бы с одной вершиной выше неё и одной ниже. Регуляризация выполняется в два прохода с помощью вертикального плоского заметания . В первом проходе снизу вверх последовательно находятся все вершины, из которых не выходят рёбра, ведущие вверх. Например, на (Рисунок 4,б) такой является вершина B. Проводя горизонтальную линию, обнаруживаем ближайшие пересекаемые ею слева и справа рёбра графа AD и EF. Затем в четырехугольнике DEHG находим самую низкую вершину и проводим в неё ребро из B. Аналогично выполняется второй проход сверху вниз (Рисунок 4,в). В результате работы этого шага каждая область планарного графа становится монотонным многоугольником.

Шаг 3. Каждую область графа необходимо разбить на треугольники. Для этого можно воспользоваться алгоритмом невыпуклого слияния двух триангуляций (Рисунок 4,г).


Рисунок 4. Схема работы цепного алгоритма триангуляции: а) - исходные отрезки; б - проход снизу вверх регуляризации графа; в) - проход сверху вниз; г) - триангуляция монотонных многоугольников

Для реализации цепного алгоритма лучше всего использовать структуры данных, в которых рёбра представляются в явном виде, например «Двойные рёбра» или «Узлы, рёбра и треугольники» .

Недостатком цепного алгоритма является то, что о форме получаемой триангуляции ничего заранее сказать нельзя. Это не оптимальная триангуляция, не жадная и не триангуляция Делоне с ограничениями. В цепном алгоритме могут получаться очень длинные вытянутые треугольники.

Для улучшения качества полученной триангуляции можно проверить все пары смежных треугольников, не разделенных структурным ребром, на выполнение условия Делоне и при необходимости произвести перестроения. В результате будет получена триангуляция Делоне с ограничениями.

В целом, все алгоритмы имеют в своей основе очень простую идею последовательного добавления точек в частично построенную триангуляцию Делоне. Формально это выглядит так.

Дано множество из N точек.

1. На первых трех исходных точках строим один треугольник.

2. В цикле по n для всех остальных точек выполняем шаги 3-5.

3. Очередная n-я точка добавляется в уже построенную структуру триангуляции следующим образом. Вначале производится локализация точки, т.е. находится треугольник (построенный ранее), в который попадает очередная точка. Либо, если точка не попадает внутрь триангуляции, находится треугольник на границе триангуляции, ближайший к очередной точке.

4. Если точка попала на ранее вставленный узел триангуляции, то такая точка обычно отбрасывается, иначе точка вставляется в триангуляцию в виде нового узла. При этом если точка попала на некоторое ребро, то оно разбивается на два новых, а оба смежных с ребром треугольника также делятся на два меньших. Если точка попала строго внутрь какого - нибудь треугольника, он разбивается на три новых. Если точка попала вне триангуляции, то строится один или более треугольников.

5. Проводятся локальные проверки вновь полученных треугольников на соответствие условию Делоне и выполняются необходимые перестроения.

Конец алгоритма.

Ниже приводится подробное описание нескольких алгоритмов.

Жадный алгоритм

Одним из первых был предложен следующий алгоритм построения триангуляции.

Жадный метод - это такой метод, при котором никогда не отменяется то, что уже было сделано ранее. В алгоритме последовательно выполняются следующие шаги.

1. Во множество исходных точек помещаются концы всех структурных отрезков.

2. Генерируются отрезки, соединяющие все пары точек, отрезки сортируются по длине.

3. В триангуляцию вставляются все отрезки структурных линий.

4. В триангуляцию последовательно отбираются отрезки из множества отсортированных по длине отрезков (от более коротких к более длинным). Если отрезок пересекается с каким-нибудь из уже вставленных, то он отбрасывается, иначе вставляется в триангуляцию.

Шаг 4 повторяется, пока не кончатся отрезки.

Заметим, что если все возможные отрезки имеют разную длину, то результат работы этого алгоритма однозначен, иначе он зависит от порядка вставки отрезков одинаковой длины.

Триангуляция называется жадной, если она построена жадным алгоритмом.

Алгоритм "Удаляй и строй"

"Удаляй и строй" не выполняется никаких перестроений. Вместо этого при каждой вставке нового узла (а) сразу же удаляются все треугольники, у которых внутрь описанных окружностей попадает новый узел (б). При этом все удаленные треугольники неявно образуют некоторый многоугольник. После этого на месте удаленных треугольников строится заполняющая триангуляция путем соединения нового узла с этим многоугольником (рис. в).

Рис. 4. Алгоритм "Удаляй и строй"

Данный алгоритм строит сразу все необходимые треугольники в отличие от обычного итеративного алгоритма, где при вставке одного узла возможны многократные перестроения одного и того же треугольника. Однако здесь на первый план выходит процедура выделения контура удаленного многоугольника, от эффективности работы которого зависит общая скорость алгоритма. В целом в зависимости от используемой структуры данных этот алгоритм может тратить времени меньше, чем алгоритм с перестроениями, и наоборот.

Алгоритм "Строй, разбивая"

Алгоритм вставки структурных отрезков "Строй, разбивая" является наиболее простым в реализации и устойчивым в работе.

В нем необходимо, последовательно переходя по треугольникам вдоль вставляемого отрезка, находить точки его пересечения с рёбрами триангуляции. В этих точках пересечения нужно поставить но-вые узлы триангуляции, разбив существующие рёбра и треугольники на части. После этого все вновь построенные треугольники долж-ны быть проверены на выполнение условия Делоне и при необходимости перестроены, не затрагивая фиксированных рёбер.


Рис. 5. Алгоритм "Строй, разбивая"

В некоторых случаях недостатком данного алгоритма вставки может быть создание большого числа дополнительных узлов и рёбер триангуляции. В то же время в других случаях этот недостаток становится преимуществом, не позволяя образовываться длинным узким треугольникам, что особенно ценится при моделировании рельефа.

Другое преимущество этого алгоритма вставки по сравнению с последующими проявляется при попытке вставки структурного отрезка в триангуляцию, в которой среди пересекаемых им рёбер есть фиксированные. Такие рёбра, как и все остальные, просто разбиваются на две части.

Алгоритм с индексированием центров треугольников k-D - деревом

В алгоритме триангуляции с индексированием центров треугольников k-D-деревом в k-D-дерево (при k = 2) помещаются только центры треугольников. При удалении старых треугольников необходимо удалять их центры из k-D-дерева, а при построении новых - заносить.

Для выполнения поиска треугольника, в который попадает текущая вставляемая в триангуляцию точка, необходимо выполнить нестандартный точечный запрос к k-D-дереву. Поиск в дереве необходимо начинать с корня и спускаться вниз до листьев. В случае если потомки текущего узла k-D-дерева (охватывающий потомки прямоугольник) не покрывают текущую точку, то необходимо выбрать для дальнейшего спуска по дереву потомка, ближайшего к точке поиска.

В результате будет найден некоторый треугольник, центр которого будет близок к заданной точке. Если в найденный треугольник не попадает заданная точка, то далее необходимо использовать обычный алгоритм поиска треугольника из простого итеративного алгоритма построения триангуляции Делоне.

Основные определения и свойства

Триангуляцией называется планарный граф, все внутренние области которого являются треугольниками.

Свойства:

· Триангуляция Делоне взаимно однозначно соответствует диаграмме Вороного для того же набора точек.

· Как следствие: если никакие четыре точки не лежат на одной окружности, триангуляция Делоне единственна.

· Триангуляция Делоне максимизирует минимальный угол среди всех углов всех построенных треугольников, тем самым избегаются "тонкие" треугольники.

· Триангуляция Делоне максимизирует сумму радиусов вписанных шаров.

· Триангуляция Делоне минимизирует дискретный функционал Дирихле.

· Триангуляция Делоне минимизирует максимальный радиус минимального объемлющего шара.

· Триангуляция Делоне на плоскости обладает минимальной суммой радиусов окружностей, описанных около треугольников, среди всех возможных триангуляций.

Рис 1. Триангуляция.

Выпуклой триангуляцией называется такая триангуляция, для которой минимальный многоугольник, охватывающий все треугольники, будет выпуклым. Триангуляция, не являющаяся выпуклой, называется невыпуклой.

Задачей построения триангуляции по заданному набору двумерных точек называется задача соединения заданных точек непересекающимися отрезками так, чтобы образовалась триангуляция.

Говорят, что триангуляция удовлетворяет условию Делоне, если внутрь окружности, описанной вокруг любого построенного треугольника, не попадает ни одна из заданных точек триангуляции.

Триангуляция называется триангуляцией Делоне, если она является выпуклой и удовлетворяет условию Делоне.


Рис 2. Триангуляция Делоне.

Метод пустого шара Делоне. Построение в общем случае

Воспользуемся пустым шаром, который мы будем перемещать, изменяя его размер так, чтобы он мог касаться точек системы {А}, но всегда оставался пустым.

Итак, поместим в систему точек {А} пустой шар Делоне. Это всегда возможно, если выбрать шар достаточно малым. Начнем увеличивать его радиус, оставляя центр шара на месте. В какой-то момент поверхность шара встретит некоторую точку i системы {А}. Это обязательно произойдет, ибо в нашей системе нет неограниченно больших пустот. Будем продолжать увеличивать радиус пустого шара так, чтобы точка i оставалась на его поверхности. Для этого придется двигать центр шара от точки i. Рано или поздно шар достигнет своей поверхностью другой точки системы {А}.

Рис.3

Симплексы Делоне заполняют пространство без щелей и наложений.

Описанная сфера любого симплекса не содержит внутри себя других точек системы.

Пусть это будет точка j. Продолжим увеличивать радиус нашего шара, сохраняя уже обе точки на его поверхности. Увеличиваясь, шар достигнет какой-то третьей точки системы, точки k. В двумерном случае наш "пустой круг" в этот момент зафиксируется, т.е. станет невозможным дальнейшее увеличение его радиуса при сохранении круга пустым. При этом мы выявляем элементарную двумерную конфигурацию трех точек (i,j,k), определяющую некий треугольник, особенностью которого является то, что внутри его описанной окружности нет других точек системы {А}. В трехмерном пространстве шар не определяется тремя точками. Продолжим увеличивать его радиус, сохраняя все три найденные точки на его поверхности. Это будет возможно до тех пор, пока поверхность шара не встретится с четвертой точкой l системы. После этого движение и рост пустого шара станут невозможными. Найденные четыре точки (i,j,k,l) определяют вершины тетраэдра, который характерен тем, что внутри его описанной сферы нет других точек системы {А}. Такой тетраэдр называется симплексом Делоне.

Симплексом в математике называют простейшую фигуру в пространстве данной размерности: тетраэдр - в трехмерном пространстве; треугольник - в двумерном. Произвольная тройка (четверка) точек системы, не лежащих в одной плоскости, всегда определяет некий симплекс. Однако он будет симплексом Делоне только с том случае, если его описанная сфера пуста. Другими словами, симплексы Делоне определяются особым выбором троек (четверок) точек в системе {А}.

Мы построили один симплекс Делоне, однако, помещая пустой шар в различные места и повторяя ту же процедуру, можно определить и другие. Утверждается, что совокупность всех симплексов Делоне системы {А} заполняет пространство без наложений и щелей, т.е. реализует разбиение пространства, но на этот раз на тетраэдры. Это разбиение называется разбиением Делоне (рис.3).

Применение триангуляции Делоне

Часто триангуляции Делоне применяются в евклидовом пространстве. Минимальное евклидово остовное дерево гарантированно располагается на триангуляции Делоне, поэтому некоторые алгоритмы пользуются триангуляцией. Также через триангуляцию Делоне приближённо решается евклидова задача о коммивояжёре.

В двумерной интерполяции триангуляция Делоне разбивает плоскость на самые "толстые" треугольники, насколько это возможно, избегая слишком острых и слишком тупых углов. По этим треугольникам можно строить, например, билинейную интерполяцию.

Еще одной часто возникающей в геоинформатике задачей является построение экспозиций склонов. Здесь требуется определить доминирующие направления склонов по странам света и разбить поверхность на регионы, в которых доминирует некоторое определенное направление. Так как для горизонтальных участков поверхности определение экспозиции не имеет смысла, то в отдельный регион выделяют области, являющиеся горизонтальными или имеющие незначительный уклон, например б<5 о. По странам света деление обычно выполняется на 4, 8 или 16 частей.


Рис.4.

Задача расчета экспозиций склонов обычно используется для анализа освещенности Земли. В связи с этим часто возникает потребность дополнительного учета текущего положения Солнца, т.е. экспозиция вычисляется как направление между нормалью к треугольнику и направлением на Солнце.

Таким образом, каждый треугольник триангуляции может быть проклассифицирован по принципу принадлежности к тому или иному региону. После этого нужно просто вызвать алгоритм выделения регионов.

20 августа 2012 в 22:41

Оптимизация алгоритма проверки условия Делоне через уравнение описанной окружности и его применение

  • Обработка изображений ,
  • Программирование

Расскажу секрет о том, как быстро проверить выполнение условия Делоне для двух треугольников.
Собственно сама оптимизация описана немного ниже(см.«Оптимизация алгоритма проверки условия Делоне через уравнение описанной окружности»), но расскажу обо всем по порядку.

В моем случае триангуляция применяется в трассировке изображения, для разбиения плоскости на примитивные сектора (треугольники). Как известно, она делится также на несколько этапов: корректировка, выявление границ, обход границ, заметание контуров. Это в самом общем виде. Я бы хотел остановиться, думаю, на самом сложном этапе: заметание плоскости.

На входе
После обнаружения и обхода границ на выходе я получил множество внешних контуров. Каждые соприкасающиеся контура имеют разные цвета. Внутри каждого такого контура содержится также известное кол-во внутренних контуров.
Таким образом, с точки зрения «заметания плоскости», если рассматривать внешние контура отдельно, имеем множество точек, каждая из которых имеет по одному соседу справа и слева. Т.е. все точки замкнуты в цепи, нет ни одной одиночной «висячей» точки, а так же в каждой из цепей содержится не менее 3-ех точек (Рисунок 1).

Рисунок 1

Что надо сделать
Нужно заметать фигуру треугольниками.
Поиски
Прочитав книгу не нашел ни одного (хотя бы одного) хоть сколько нибудь подходящего к моему случаю способа построения триангуляции Делоне. Искать другие книги не стал. Да и этой хватило, она привела мысли моей головы в порядок. В итоге изобрел свой «велосипед».
Алгоритм
1) Допустим, для начала, что в рассматриваемой фигуре всего одна последовательность. Тогда все сводится к последовательному забиранию треугольников. Берем любую точку и пытаемся построить треугольник с соседними точками. Если треугольник построить не получилось (линия связывающая эти две точки, пересекается с уже построенными или линия проходит в зоне отчуждения (Рисунок 2), двигаемся к соседней точке, допустим вправо. Когда очередной треугольник найден, заносим его в список (Рисунок 3), а точку из которой он строился удаляем (Рисунок 4).


Рисунок 2

Рисунок 3

Рисунок 4

Еще одно но: при сохранении очередного треугольника необходимо записывать вершины в обходе по часовой стрелке (в правой системе координат). Это пригодится в дальнейшем для уменьшения вычислительных ресурсов.

2) Повторяем шаг 1 пока не заметаем всю плоскость.

3) Если последовательностей несколько, т.е. одна, а внутри её еще одна или более внутренних контуров (Рисунок 1). Тут необходимо рассмотреть каждую последовательность отдельно. Возьмем очередной внутренний контур. Из одного внешнего и одного внутреннего сделаем два одиночных контура. Для этого нужно найти два «порта» из одного контура в другой. Условие для «портов»: они не должны пересекаться между собой(не должны соприкасаться даже концами), не должны пересекаться с линиями контуров (Рисунок 5).


Рисунок 5

Рисунок 6
4) Далее следует ввести поочередно все внутренние последовательности в уже образованные, отделенные друг от друга (пункт 3) последовательности. Сливать нужно с той, которая содержит новую. По определению ни одна внутренняя последовательность не касается и не пересекается с другими(как одной внешней, так и всеми возможными внутренними), так что все пройдет гладко.
Найдя порты (Рисунок 6) легко построить новые последовательности и обойти их пунктами 1 и 2 текущего алгоритма (Рисунок 7).

Рисунок 7

5) После 4-его этапа имеем список треугольников(Рисунок 8). Как бы с задачей уже справились, но осталось сделать картинку красивой: проверить выполнение условия Делоне (Рисунок 9).

Рисунок 8

Рисунок 9

6) Забегая вперед расскажу про шестой пункт. Он заключается в последовательном прогоне по списку полученных треугольников пунктом №5. Сначала метим все треугольники «грязными». В каждом цикле проверяем для каждого треугольника условие Делоне. Если условие не выполняется, то делаем перестроение и помечаем соседей и текущий треугольник «грязными». Если условие выполняется, то метим его чистым. В моей реализации алгоритма, каждый треугольник имеет ссылку на соседей. В этом случае 6-ой пункт работает наиболее быстро.

Подробнее о пятом этапе
Сейчас, на сколько я знаю, существуют два возможных способа определить удовлетворяют треугольники условию Делоне или нет: 1) Проверить сумму противоположных углов. Она должны быть меньше 180. 2) Вычислить центр описанной окружности и посчитать расстояние до 4-ой точки. Всем известно, условие Делоне выполняется, если точка находится за пределами описанной окружности.

Мощность вычислений №1: 10 операций умножения/деления и 13 операций сложения/вычитания.
Мощность вычислений №2: 29 операций умножения/деления и 24 операций сложения/вычитания.

С точки зрения вычислительной мощности, которая высчитывается к примеру в книге , выгоднее вариант №1. Его и реализовал, если бы не… (Рисунок 10). Как оказалось после постановки данного метода на «конвейер», получилась неопределенность. Это вариант, когда сам угол А больше 180 градусов. Он рассматривается в книге как один из отдельных частных методов. А с этим пропадает вся его элегантность, прозрачность и производительность. А так же в последствии оказалось, что метод №2 можно очень существенно оптимизировать.


Рисунок 10

Оптимизация алгоритма проверки условия Делоне через уравнение описанной окружности

Далее чистая математика.

Итак имеем:
Проверка условия для точки M(X, Y) уравнением окружности, проходящей через точки A(x1, y1), B(x2, y2), C(x3, y3), можно записать в виде:

(a ⋅ (X^2 + Y^ 2) − b ⋅ X + c ⋅ Y − d) ⋅ sign a ≥ 0

Подробности можно взять в великолепной книге . (Нет, не я ее автор)
Итак, sign a - это знак направления обхода, с самого начала я строил треугольники по часовой стрелке, так что его можно опустить (он равен единице).

A(x1 - X, y1 - Y), B(x2 - X, y2 - Y), B(x3 - X, y3 - Y);

D >= 0

Рисунок 11

Просто не правда ли?

Согласно книге, опять же,

(x1^2 + y1^2)*(y2*x3 - x2*y3) + (x2^2 + y2^2)*(x1*y3 - y1*x3) + (x3^2 + y3^2)*(y1*x2 - x1*y2) <= 0

Имеем: 15 операций умножения/деления и 14 операций сложения/вычитания.

Спасибо за внимание. Жду критики.

Список используемой литературы
1. Скворцов А.В. Триангуляция Делоне и её применение. – Томск: Изд-во Том. ун-та, 2002. – 128 с. ISBN 5-7511-1501-5

GRID- модели – модели регулярных ячеек.

Пусть введена система координат
ии
. Пользователь задает
и шаги дискретизации
.


,

- физические координаты точки.

Вычисляем
и
,
- разрядная сетка.

- квантованные значения. Реальные:

- параметр алгоритма – количество точек, - вес. Чем ближе точка, тем больше вес.

- степень расстояния (1 или 2).

Нормировочный коэффициент:

Чем ближе к 1, тем больше учитываются точки с большим весом.

Это метод IDW – долгий, для каждой т. необходимо найти соседей. Набор соседей может быть эффективно найден - ближайшим. Каждая из точек продуцирует «колышек» определенной высоты. От нерегулярности постановок точки многое зависит, для этого берут
или
т.е. разделяют на сектора и в окрестности точки строим.

Преимущество – простота

Недостаток:


------Билет 14. Tin-модель. Алгоритмы триангуляции Делоне------

1) Триангуляционные (tin).

Триангуляция – построение функции в виде совокупности кусочно - линейной функции

Триангуляция – интерполяция внутри выпуклой области.

Триангуляция – планарный граф, все внутренние ребра которого – треугольники; способ представления пространства в виде примыкающих друг к другу треугольников без перекрытий. На наборе точек триангуляция строится несколькими способами.

Нужен алгоритм для построения оптимальной триангуляции.

Плоскость, проходящая через 3 точки.

1) Найдем треугольник, который
;

2)
- строим уравнение плоскости.

Чтобы проверить находятся ли точки внутри треугольника или нет, необходимо подставить значение в уравнение линий – ребер треугольника. Если все 3 уравнения > 0, то внутри.

Структура представления:

Каждая триангуляция содержит одинаковое количество треугольников.

, где – количество внутренних точек,
– количество точек.

Жадный триангуляция.

Все точки соединяем ребрами, выбираем минимум, добавляем в триангуляцию. Далее берем следующий минимум, не пересекающийся с предыдущими и т.д. В результате получена жадная триангуляция.

Триангуляция Делоне.

Внутрь окружности, описанной вокруг любого треугольника, не попадают точки других треугольников. Строится единственным образом.

Флипом называется переброска ребер. Она позволяет перейти от обычной триангуляции к триангуляции Делоне. Чтобы проверить принадлежность точки к окружности: подставить, если < R, то внутри.

Условие Делоне.

Уравнение окружности, проходящей через три точки:

Если меньше нуля, то внешняя, иначе – внутренняя.

–условие Делоне.

Алгоритм построения триангуляции Делоне:

1) Подследственного добавления точек – простой итеративный алгоритм:

Есть набор
добавляем в треугольник, осуществляется построение
разбиение треугольника
перестроение. На нулевом этапе добавляем 3-4 фиктивные точки, которые заведомо покрывают наш конверт, все точки внутри. После кидаем точку, смотрим в какой треугольник попала, разбиваем на 3, для каждого треугольника проверяем условие Делоне и осуществляем флип переброску ребер. Среднее количество перестроений равно трем.

Теоретическая сложность

2) Методы ускорения. Основан на статистически зависимых точках. Затравочный треугольник – треугольник в который попала предыдущая точка. Затем соединяем две точки – предыдущую и новую.

Перемещаемся из первой точки в другую.

Понравилась статья? Поделиться с друзьями: