Пентозофосфатный путь. Биосинтез и мобилизация гликогена. Глюконеогенез. глюконеогенез – синтез глюкозы из неуглеводных продуктов. такими продуктами или метаболитами являются в первую очередь молочная и пировиноградная. Обходные пути глюконеогенеза

Глюконеогенез - синтез глюкозы из соединений неуглеводной природы.

В организме взрослого человека за сутки может синтезироваться до 250 г глюкозы. Глюконеогенез осуществляется главным образом в печени (синтезируетя до 90 % всей глюкозы), в корковом веществе почек и в энтероцитах (совсем незначительно).

Глюконеогенез стимулируется при длительном голодании, при ограничении поступления углеводов с пищей, в период восстановления после мышечной нагрузки, у новорождённых в первые часы после рождения.

Субстраты глюконеогенеза. Истинными субстратами глюконеогенеза являютя пируват, оксалоацетат, фосфодиоксиацетон, которые непосредственно включаются в этот процесс. Все вещества неуглеводной природы, дающие эти метаболиты, являются субстратами глюконеогенеза: лактат→ПВК, метаболиты цикла Кребса→ЩУК, глицерол→фосфодиоксиацетон, пропионил-КоА→метаболиты цикла Кребса→ЩУК, глюкогенные аминокислоты→ПВК или ЩУК. Главный источник субстратов глюконеогенеза - глюкогенные аминокислоты. К глюкогенным аминокислотам относятся все протеиногенные аминокислоты, кроме лейцина и лизина.

Стехиометрия:

2ПВК + 4АТФ + 2ГТФ + 2НАДН.Н+ + 2Н + 6Н2О Глюкоза + 4АДФ + 2ГДФ + 6Фн + 2НАД +

Глюконеогенез протекает, в основном, по тому же пути, что и гликолиз, но в обратном направлении. Для обхода трех ключевых реакций гликолиза используются четыре специфических фермента глюконеогенеза.
Ключевые ферменты и ключевые реакции глюконеогенеза:

1. Пируваткарбоксилаза
2. Фосфоенолпируваткарбоксикиназа
3. Фруктозо-1,6-бисфосфатаза (Фруктозо-1,6-бисфосфат + Н2О и Фруктозо-6-фосфат + ФН)
4. Глюкозо-6-фосфатаза (Глюкозо-6-фосфат + Н2О и Глюкоза + ФН)

Энергетический баланс. На синтез молекулы глюкозы из двух молекул пирувата расходуется 4АТФ и 2ГТФ (6АТФ). Энергию для глюконеогенеза поставляет процесс β-окис- ления жирных кислот.

Регуляция глюконеогенеза. Глюконеогенез стимулируется в условиях гипогликемии при низком уровне инсулина и преобладании его антагонистов (глюкагона, катехоламинов, глюкокортикоидов).

1. Регуляция активности ключевых ферментов:

фруктозо-1,6-бисфосфатаза по аллостерическому механизму активируется АТФ, ингибирутся Фр-1,6-ФФ и АМФ;

пируваткарбоксилаза активируется СН3СО~КоА (аллостерический активатор).

2. Регуляция количества ключевых ферментов: глюкокортикоиды и глюкагон

индуцируют синтез ключевых ферментов, а инсулин - репрессирует.

3. Регуляция количества субстрата: количество субстратов глюконеогенеза увеличивается под действием глюкокортикоидов (катаболическое действие на белки мышечной и лимфоидной ткани, на жировую ткань), а также глюкагона (катаболическое действие на жировую ткань).

Биологическая роль глюконеогенеза:

1. Поддержание уровня глюкозы в крови. При длительном голодании (голодание более суток) глюконеогенез является единственным процессом, поставляющим глюкозу в кровь.

2. Возвращение лактата в метаболический фонд углеводов. Лактат, образующийся в процессе анаэробного окисления глюкозы в эритроцитах и скелетных мышцах, транспортируется кровью в печень и превращается в гепатоцитах в глюкозу. Это так называемый межорганный цикл Кори.

А Пируват и лактат

Пируват образуется в печени из лактата и аланина. Лактатдегидрогеназа окисляет лактат в пируват с образованием NADH. Аланинаминотрансфераза переносит аминогруппу с аланина на α -кетоглутарат с образованием глутамата и пирувата.

Б Глюкогенные аминокислоты

Аминокислоты, которые катаболизируются до пирувата или метаболитов ЦТК, являются потенциальными субстратами глюконеогенеза (пируват и метаболиты ЦТК способны образовывать оксалоацетат и включаться в глюконеогенез). Такие аминокислоты называют глюкогенными . Аминокислоты аланин и глутамин, переносящие аминогруппы из мышц в печень, являются особенно важными глюкогенными аминокислотами в нашем организме.

В Глицерол

Глицерол поступает в наш организм с пищей и синтезируется в печени и жировой ткани. Во время голодания триацилглицеролы (ТАГ) в адипоцитах расщепляются до глицерола и жирных кислот. Глицерол поступает в кровь и переносится в печень. Далее в ходе двух ферментативных реакций он преобразуется в дигидроксиацетонфосфат , который является метаболитом гликолиза и глюконеогенеза.

Г Жирные кислоты

Жирные кислоты с нечетным числом атомов окисляются с образованием про- пионил-КоА . Он преобразуется в метилмалонил-КоА, который образует сукцинилКоА в ходе ещё одной ферментативной реакции. Сукцинил-КоА является метаболитом ЦТК, поэтому потенциально способен включаться в глюконеогенез. Это подтверждается исследованиями с изотопами углерода C-14.

2.3 Реакции глюконеогенеза

А Уравнения реакций

Пируват + АТФ + HCO3 - + H2 O Оксалоацетат + АДФ + Фн + 2H+

Оксалоацетат + ГТФ Фосфоенолпируват + ГДФ + CO2

Фосфоенолпируват + H2 O 2-Фосфоглицерат

2-Фосфоглицерат 3-Фосфоглицерат

3-Фосфоглицерат + АТФ 1,3-Бисфосфоглицерат + АДФ

1,3-Бисфосфоглицерат + NADH + H+ Глицеральдегид-3-фосфат + NAD+ + Фн (× 2)

Глицеральдегид-3-фосфат Дигидроксиацетонфосфат

8. Дигидроксиацетонфосфат + Глицеральдегид-3-фосфат Фруктозо-1,6-бисфосфат

9. Фруктозо-1,6-бисфосфат + H2 O Фруктозо-6-фосфат + Фн

10. Фруктозо-6-фосфат Глюкозо-6-фосфат

11. Глюкозо-6-фосфат + H2 O Глюкоза + Фн

32 Глава 2 Глюконеогенез

Б Энергетические барьеры и уникальные реакции глюконеогенеза

В гликолизе необратимыми являются 1-я, 3-я и 10-я реакции. Эти реакции идут лишь в одном направлении и называются энергетическими барьерами . В глюконеогенезе они обходятся с помощью 4 реакций. Остальные реакции являются общими для гликолиза и глюконеогенеза, поскольку способны идти как в прямом, так и в обратном направлении в зависимости от избытка продукта или субстрата.

Реакция 1

В первой реакции глюконеогенеза пируваткарбоксилаза катализирует карбоксилирование пирувата с образованием оксалоацетата с затратой 1 молекулы АТФ. Реакция протекает в митохондриях в две фазы:

1. Разрыв макроэргической связи в молекуле АТФ с образованием АДФ. Образуется высокоэнергетическая молекула карбоксифосфата, которая затем связывается с биотином и «активируется».

2. Активная карбоксильная группа переносится с карбоксибиотина на молекулу пирувата с образованием оксалоацетата.

Реакция 2

Реакции глюконеогенеза 33

Гормональная регуляция:

Некоторые гормоны оказывают стимулирующее влияние на экспрессию гена ФЕПкарбоксикиназы.

Вторая реакция глюконеогенеза приводит к образованию высокоэнергетической молекулы - фосфоенолпирувата . В ходе этой реакции оксалоацетат декарбоксилируется с затратой 1 молекулы ГТФ.

Рис. 7. Транспорт оксалоацетата и фосфоенолпирувата из митохондрий в цитозоль.

Эту реакцию катализирует фермент ФЕП-карбоксикиназа . У человека он обнаруживается как в митохондриях, так и в цитозоле. Однако в некоторых тканях он присутствует только в цитозоле, поэтому оксалоацетат должен быть перенесен туда из митохондрий. Во внутренней мембране митохондрий есть белковые переносчики для малата и аспартата, но не для оксалоацетата, поэтому он должен быть преобразован в одно из этих соединений, для которых в мембране есть транспортные белки.

Для этого существует два пути (см. Рис. 7 ): 1) оксалоацетат восстанавливается до малата; 2) оксалоацетат принимает аминогруппу в реакции трансаминирования и образует аспартат. Первый путь требует участия NADH. Второй имеет небольшое в печени: аспартат, который переносится в цитозоль из митохондрий, дезаминируется в цикле мочевины до оксалоацетата.

Реакции 3-8

Эти реакции катализируются ферментами гликолиза, однако протекают не в прямом (для гликолиза), а в обратном направлении.

Реакция 9

В 9-й реакции глюконеогенеза фруктозо-1,6-бисфосфат гидролизуется до фруктозо-6-фосфата при участии фермента фруктозо-1,6-бисфосфатазы . Известно несколько аллостерических регуляторов этого фермента (указаны выше).

Реакция 10

Фруктозо-6-фосфат изомеризуется в глюкозо-6-фосфат. Эту реакцию катализирует фермент гликолиза фосфоглюкоизомераза.

Реакция 11

Заключительной реакцией глюконеогенеза является дефосфорилирование глюкозы в эндоплазматическом ретикулуме, катализируемое глюкозо-6-фосфата- зой . В результате этой реакции образуется глюкоза . Остаток фосфорной кислоты и глюкоза переносятся обратно в цитозоль с помощью белков T3 и T2, соответственно. Далее свободная глюкоза выносится наружу из клетки белками ГЛЮТ2.

Фермент этой реакции обнаружен лишь в печени, почках и тонком кишечнике, поэтому эти органы способны экспортировать глюкозу в кровь. Остальные клетки (не все) синтезируют глюкозу лишь для собственных нужд.

Глюконеогенез - это процесс синтеза глюкозы из веществ неуглеводной природы. У млекопитающих эту функцию выполняет в основном печень , в меньшей мере - почки и клетки слизистой кишечника . Главными суб­стратами глюконеогенеза являютсяпируват, лактат, глицерин, аминокислоты (рис.10).

Рисунок 10

Глюконеогенез обеспечивает потребности орга­низма в глюкозе в тех случаях, когда диета содержит недостаточное количество углеводов (физическая нагрузка, голодание). Постоянное поступление глюкозы особенно необходимо для нервной системы и эри­троцитов. При понижении концентрации глюкозы в крови ниже определенного критического уровня нарушается функционирование мозга; при тяжелой гипогликемии возникает коматозное состояние и мо­жет наступить летальный исход.

Запасов гликогена в организме достаточно для удовлетворения потребностей в глюкозе в период между приемами пищи. При углеводном или полном голодании, а также в условиях длительной физической работы концентрация глюкозы в крови поддерживается за счет глюконеогенеза. В этот процесс могут быть вовлечены вещества, которые способны превратиться в пируват или любой другой метаболит глюконеогенеза. На рисунке показаны пункты включения первичных субстратов в глюконеогенез:

Глюкоза необходи­ма для жировой ткани как источник глицерола, входящего в состав глицеридов; она играет существенную роль в поддержании эффек­тивных концентраций метаболитов цикла лимон­ной кислоты во многих тканях. Даже в условиях, когда большая часть потребностей организма в калориях обеспечивается за счет жира, всегда сохраняется определенная потребность в глю­козе. Кроме того, глюкоза служит единственным ви­дом топлива для работы скелетной мышцы в анаэробных условиях. Она является предшествен­ником молочного сахара (лактозы) в молочных же­лезах и активно потребляется плодом в период раз­вития. Механизм глю­конеогенеза используется для удаления из крови продуктов тканевого метаболизма, например лактата, образующегося в мышцах и эритроцитах, глицерола, непрерывно образующегося в жировой ткани

Включение различных субстратов в глюконео­генез зависит от физиологического состояния орга­низма. Лактат является продуктом анаэробного гликоли­за в эритроцитах и работающих мышцах. Глицерин высвобождается при гидролизе жиров в жировой ткани в постабсорбтивный период или при физической нагрузке. Аминокислоты образуются в результате распада мышечных белков.

Семь реакций гликолиза легко обратимы и используются в глюконеогенезе. Но три киназные реакции необратимы и должны шунтироваться (рис. 12). Так, фруктозо-1,6-дифосфат и глюкозо-6-фосфат дефосфорилируются специфическими фосфатазами, а пируват фосфорилируется до образования фосфоенолпирувата посредством двух промежуточных стадий через оксалоацетат. Образование оксалоацетата катализируется пируваткарбоксилазой. Этот фермент содержит в качестве кофермента биотин. Оксалоацетат образуется в митохондриях, транспортируется в цитозоль и включается в глюконеогенез. Следует обратить внимание на то, что каждая из необратимых реакций гликолиза вместе с соответствующей ей необратимой реакцией глюконеогенеза составляют цикл, называемый субстратным:

Рисунок 12

Таких циклов существует три - соответственно трем необратимым реакциям. Эти циклы служат точками приложения регуляторных механизмов , в результате чего изменяется поток метаболитов либо по пути распада глюкозы, либо по пути ее синтеза.

Направление реакцийпервого субстратного цик­ла регулируется главным образом концентрацией глюкозы. При пищеварении концентрация глюко­зы в крови повышается. Актив­ность глюкокиназы в этих условиях максимальна. Вследствие этого ускоряется гликолитическая реак­цияглюкоза ® глюкозо-6-фосфат. Кроме того, инсу­лин индуцирует синтез глюкокиназы и ускоряет тем самым фосфорилирование глюкозы. Поскольку глюкокиназа печени не ингибируется глюкозо-6-фосфатом (в отличие от гексокиназы мышц), то основная часть глюкозо-6-фосфата направляется по гликолитическому пути.

Превращение глюкозо-6-фосфата в глюкозу катализируется другой специфической фосфатазой-глюкозо-6-фосфатазой. Она присутствует в пе­чени и почках, но отсутствует в мышцах и жировой ткани. Наличие этого фермента позволяет ткани по­ставлять глюкозу в кровь.

Распад гликогена с образованием глюкозо-1-фосфата осуществляется фосфорилазой. Синтез гликогена идет по совершенно другому пути, через образование уридиндифосфатглюкозы, и катализи­руетсягликогенсинтазой .

Второй субстратный цик­л: превращение фруктозо-1,6-бисфосфата во фруктозо-6-фосфат, катализи­руется специфическим ферментомфруктозо-1,6-бисфосфатазой. Этот фермент имеется в печени и почках, он был также обнаружен в поперечнополосатых мышцах.

Направление реакцийвторого субстратного цик­ла зависит от активности фосфофруктокиназы и фосфатазы фруктозо-1,6-бисфосфата. Активность этих ферментов зависит от концентрации фруктозо-2,6-бисфосфата.

Фруктозо-2,6-бисфосфат образуется путем фосфорилирования фруктозо-6-фосфата при участии би­функционального фермента (БИФ), который ка­тализирует также и обратную реакцию.

Киназная активность проявляется, когда бифунк­циональный фермент находится в дефосфорилированной форме (БИФ-ОН). Дефосфорилированная форма БИФ характерна для абсорбтивного периода, когда инсулин-глюкагоновый индекс высокий.

При низком инсулин-глюкагоновом индексе, ха­рактерном для периода длительного голодания, происходят фосфорилирование БИФ и проявление его фосфатазной активности, результатом чего яв­ляются снижение количества фруктозо-2,6-бисфосфата, замедление гликолиза и переключение на глюконеогенез.

Киназная и фосфатазная реакции катализируют­ся разными активными центрами БИФ, но в каждом из двух состояний фермента - фосфорилиро-ванном и дефосфорилированном - один из актив­ных центров ингибирован.

Запасы гликогена в печени ограничены и после 12-18 часового голодания они исчезают полностью. Многие клетки нуждаются в постоянном обеспечении глюкозой (эритроциты, нейроны, мышечные клетки в анаэробных условиях). Глюконеогенез является тем метаболическим путем, который решает данную проблему. Глюконеогенез – это метаболический путь превращения неуглеводных соединений в глюкозу. Многие соединения могут участвовать в этом процессе. Это и молочная кислота, и ПВК, и аминокислоты, распадающихся до пирувата (аланин, цистеин, глицин, серин, треонин и др.), и глицерин, и пропиононил-КоА, и субстраты цикла Кребса (оксалацетат и др., рис. 5.8).

Глюконеогенез представляет собой модификацию таких процессов, как гликолиз и цикл Кребса. Большая часть реакций гликолиза обратима. Исключение составляют три реакции, которые катализируют гексокиназа, фосфофруктокиназа-1 и пируваткиназа и для преодоления этих реакций используются специальные ферменты, которые назвали ключевыми реакциями глюконеогенеза. Данные ферменты сосредоточены в печени и корковом веществе почек. В таблице 5.2. приводятся названия ферментов, катализирующих необратимые реакции гликолиза и соответствующих им ключевых ферментов глюконеоегенеза.

Таблица 5.2. Ключевые ферменты гликолиза и гликонеогенеза

При совместной работе таких ферментов существует проблема т.н. “пустых” субстратных циклов. При условии катализа прямой и обратной реакции разными ферментами, продукт, получаемый в прямой реакции, становится субстратом другого фермента, который катализирует обратную реакцию, превращая продукт вновь в субстрат первого фермента. Возникает опасность “холостого” прокручивания субстратов реакции. Проблема решается организацией многоуровневой регуляции, включающей реципрокную аллостерическую регуляцию и ковалентную модификацию структуры ферментов.

Принято считать начальным этапом глюконеогенеза реакции, идущие в обход пируваткиназной реакции гликолиза. Пируваткиназа – объект влияния регуляторных систем(рис.5.9), управляющих скоростью гликолиза, поэтому в условиях благоприятствующих глюконеогенезу (голодание и др.) активность этого фермента следует затормозить. Этому способствует повышение количества аланина, который является аллостерическим ингибитором пируваткиназы и усиление секреции глюкагона. Последний стимулирует образование цАМФ в гепатоцитах, активирующей протеинкиназу А. Фосфорилирование пируваткиназы под влиянием протеинкиназы А вызывает переход ее в неактивное состояние. Торможение пируваткиназы благоприятствует включению глюконеогенеза.



Рис.5.9. Регуляция активности пируваткиназы

Рис.5.10. Основные субстраты и ферменты глюконеогенеза:

1–лактатдегидрогеназа; 2– пируваткарбоксилаза; 3–малатдегидрогеназа; 4–фосфоенолпируват карбоксикиназа; 5–фруктозо-1,6-дифосфатаза; 6– глюкозо-6-фосфатаза; 7–глицеролкиназа; 8–a-глицеролфосфатде гидрогеназа

Если превращение фосфоенолпирувата в ПВК, которое катализирует пируваткиназа, представляет одну химическую реакцию, то обратное превращение ПВК в фосфоенолпируват требует нескольких реакций. Первая реакция – это карбоксилирование пирувата. Реакция катализируется пируваткарбоксилазой и протекает с участием карбоксибиотина – активной форы СО 2 в клетке. Продукт карбоксилирования – оксалоацетат занимает особое место в метаболизме митохондрий, где протекает данная реакция. Это важнейший субстрат цикла Кребса (см. ниже) и его выход из митохондрий затруднен. Для преодоления мембраны митохондрий оксалоацетат восстанавливается при помощи митохондриальной малатдегидрогеназы в легко приникающую через мебрану яблочную кислоту. Последняя, покинув митохондрии, в цитозоле окисляется вновь в оксалоацетат уже под влиянием цитозольной малатдегидрогеназы. Дальнейшее превращение оксалоацетата в ФЕПВК происходит в цитозоле клетки. Здесь при помощи фосфоенолпируваткарбоксикиназы окалоацетат декарбоксилируется с затратой энергии, высвобождаемой при гидролизе ГТФ и образуется ФЕПВК.

После образования ФЕПВК последующие реакции представляют обратимые реакции гликолиза. Из каждых двух образующихся 3-ФГА одна молекула при участии фосфотриозоизомеразы превращается в ФДА и обе триозы под влиянием альдолазы конденсируются в фруктозо-1,6-дифосфат. Некоторое количество ФДА образуется путем окисления глицеролфосфата, возникающего под влиянием глицеролкиназы из глицерола, поступающего в печень из жировой ткани. Это единственный субстрат из липидов, который участвует в глюконеогенезе. Превращение фруктозо-1,6-дифосфата во фруктозо-6-фосфат катализируется фруктозо-1,6-дифосфатазой-1. Затем вновь следует реакция, обратная гликолизу. Заключительная реакция глюконеогенеза катализируется ферментом глюкозо-6-фосфатазой, который катализирует гидролиз глюкозо-6-фосфатаи образующаяся свободная глюкоза может выходить из клетки.

Суммарная реакция синтеза молекулы глюкозы:

2 ПВК + 4 АТФ + 2 ГТФ + 2НАДН + 2H + + 6H2O Глюкоза + 2НАД + + 4АДФ+ 2 ГДФ + 6 Фн +6H +

Таким образом, синтез одной молекулы глюкозы “обходится” клетке затратой шести макроэргов. 2 молекулы АТФ расходуются для активирования СО 2 , 2 молекулы ГТФ используются в фосфоенолпируваткарбоксикиназной реакции и 2 молекулы АТФ – для образования 1,3-дифосфоглицериновой кислоты.

Глюконеогенез активируется в клетках печени во время голодания, после продолжительных физических упражнений, при употреблении пищи, богатой белками при низком содержании в ней углеводов и т.д.

Интенсивность процесса зависит от количества субстратов, и активности, и количества ключевых ферментов гликолиза и глюконеогенеза.

Основными поставщиками субстратов для печени являются мышцы, эритроциты, жировая ткань. У последней довольно ограниченные возможности, поскольку только глицерол может использоваться для синтеза глюкозы, а это только около 6% от веса капельки жира.

Лактат, образующийся в результате работы мышц в анаэробных условиях или поступающий из эритроцитов, более значимый источник глюкозы. Наиболее важными источниками являются гликогенные аминокислоты, которые могут поступать с пищей, богатой белками или из мышц в условиях голодания.

Рис. 5.11. Цикл Кори

Чтобы непрерывно снабжать глюкозой клетки, для которых она является основным источником энергии, но они не могут окислить ее полностью в силу отсутствия митохондрий (эритроциты) или из-за работы в анаэробных условиях, между печенью и этими клетками устанавливаются циклические процессы по обмену субстратами. Один из таких – цикл Кори: образующаяся в мышцах (эритроцитах) молочная кислота поступает в общий кровоток, захватывается печенью и используется ею в качестве субстрата глюконеогенеза; синтезируемая при этом глюкоза отдается в кровототок и метаболизируется мышцами или эритроцитами для получения энергии (рис. 5.11).

Рис.5.12.Аланиновый цикл

В отличие от цикла Кори, аланиновый цикл(рис.5.12) протекает при условии потребления периферическими тканями кислорода и требует митохондрий. При употреблении пищи богатой белами или при голодании происходит довольно активный обмен между печенью и мышцами аланином и глюкозой. Аланин из мышц передается клеткам печени, где он переаминируется и ПВК используется для синтеза глюкозы. По мере необходимости глюкоза поступает в мышцы и окисляется до ПВК, а затем, путем переаминирования, превращается в аланин который может вновь повторить этот цикл. Энергетически это более выгодный путь, чем цикл Кори.

Мы перейдем теперь к синтезу глюкозы из неуглеводных предшественников, процессу, называемому глюконеогенезом. Этот метаболический путь имеет очень важное значение, поскольку некоторые ткани, и в частности мозг, в высшей степени зависят от глюкозы как первичного топлива.

Рис. 15.4. Схематическое изображение доменной структуры глута-тион-редуктазы. Каждая субъединица этого димерного фермента состоит из NADP+ -домена, FAD-домена и пограничного домена. Глутатион связан с FAD-доменом одной субъединицы и пограничным доменом другой субъединицы

Дневная потребность мозга взрослого человека в глюкозе составляет примерно 120 г, т. е. на долю мозга приходится большая часть общей потребности организма в глюкозе (160 г). В жидкостях тела присутствует около 20 г глюкозы, и примерно 190 г глюкозы может быть легко получено из гликогена, ее резервной формы Таким образом, «прямых» резервов глюкозы вполне достаточно для удовлетворения потребности в ней в течение одного дня. При более длительном голодании для обеспечения жизнеспособности организма глюкоза должна образовываться из неуглеводных источников. Важную роль играет глюконеогенез также в периоды интенсивной физической нагрузки.

Основными неуглеводными предшественниками глюкозы служат лактат, аминокислоты и глицерол. Лактат образуется в работающей скелетной мышце, когда скорость гликолиза превосходит скорость превращений в цикле трикарбоновых кислот и в дыхательной цепи (разд. 12.10). Аминокислоты происходят из белков, поступающих с пищей, а при голодании образуются в результате распада белков скелетных мышц

Рис. 15.5. Путь тлюконеогенеза. Отличительные реакции этого пути показаны красными стрелками. Остальные реакции - общие с реакциями гликолиза. Ферменты тлюконеогенеза локализованы в цитозоле, кроме пируват-карбоксилазы (в митохондриях) и глюкозо-6-фосфатазы (связана с эндоплазматическим ретикулумом). Указаны этапы («пункты входа»), на которых в глюконеогенез включаются лактат, глицерол и аминокислоты.

(разд. 23.8). В результате гидролиза триацилглицеролов (разд. 17.4) в жировых клетках образуются глицерол и жирные кислоты. Глицерол служит предшественником глюкозы, тогда как жирные кислоты не могут превращаться в организме животных в глюкозу по причинам, которые будут обсуждаться позднее (разд. 17.14). По пути глюконеогенеза происходит превращение пирувата в глюкозу. Включение метаболитов в этот путь происходит в основном на уровне пирувата, оксалоацетата и дигидроксиацетонфосфата (рис. 15.5). Главным местом глюконеогенеза служит печень. Этот процесс протекает также в коре почек, но общее количество глюкозы, образующейся в почках, составляет лишь 1/10 такового и печени, что объясняется меньшей массой почечной ткани. Очень незначительный глюконеогенез имеет место в мозгу, а также в скелетной и сердечной мышцах. Скорее всего глюконеогенез в печени и почках обеспечивает такое содержание глюкозы в крови, при котором мозг и мышцы могут извлекать из крови достаточные количества глюкозы для удовлетворения своих метаболических потребностей.

Понравилась статья? Поделиться с друзьями: